A TWO-RELATION MONOID DOES NOT HAVE FINITE
DERIVATION TYPE

SLAVA PESTOV

ABSTRACT. The monoid presented by (a,b|aaa = a, abba = bb) does not have
finite derivation type. Furthermore, a census of two-generator, two-relation
monoids shows that this example is minimal with this property, if we order
monoid presentations by the sum of lengths of their defining relations.

CONTENTS
1. Introduction 1
2. Preliminaries 3
3. Finite Derivation Type 4
4. The Main Result 11
5. A Monoid Census 24
References 30

1. INTRODUCTION

Imagine we list all monoid presentations with two generators and two relations,
in order of increasing length N, and try to solve the word problem in each one:

(@.blw=z,y=2) N:=|w|+|z[+]y| +]|

How long before we find a monoid whose word problem cannot be solved by the
Knuth-Bendix algorithm? The answer is, not long! The main result in Section 4 is
that (a,b|aaa = a,abba = bb), of length 10, does not have finite derivation type, so
Knuth-Bendix will always fail to find a finite complete presentation. Independent
of the main result, Section 5 describes a computational survey of finite complete
presentations for two-generator, two-relation monoids up to this length.

To backtrack a little, the word problem is perhaps the central question in the
study of finitely-presented monoids:

The word problem. Given a finite monoid presentation (A | R)
and two words x, y € A*, can we rewrite x into y by a series of
bidirectional rewrite steps taken from R?

The word problem is undecidable in the general case [1]. On the other hand,
when (A| R) is a complete monoid presentation, we can compute a normal form
for any word by viewing the elements of R as directed reduction rules. The word
problem then reduces to checking if two words have identical normal forms [2]. The
Knuth-Bendixz algorithm takes an arbitrary monoid presentation, and attempts to
construct a complete presentation by repeatedly adding new rules [3, 4, 5].

1

2 SLAVA PESTOV

This process of completion either terminates in a finite number of steps, or “fails”
in that it continues to record new consequences of the defining relations forever. It
is known that a successful outcome can depend both on choice of reduction order,
as well as the alphabet used to present the monoid [6, 7]. It is also known that
there are finitely-presented monoids with no finite complete presentation over any
alphabet, and we recall these results now.

A monoid with an undecidable word problem does not admit a finite complete
presentation, so completion always fails to terminate in this case. Tseitin’s classic
example has 5 generators and 7 relations [8, 9]:

¢ :={(a,b,c,d,e|ac = ca,ad = da,bc = cb,bd = db,
eca = ce,edb = de,
cca = ccae)

The first examples with decidable word problem are due to Craig C. Squier [10],
who showed that a monoid given by a finite complete presentation must satisfy the
invariant of FP3, while Sy, with presentation below, has a decidable word problem
for all £ > 0, but not FP3 when k > 2:

Sk = <a7b7t7x17'"7xk7y17"'7yk|ab:]-7

r1a = atry, ..., Tra=alrg,
1t =txy, ooy, xRt =txy,
x1b = bxq, eo., xpb=bxy,
1Yy = 1, ey Yk = 1>

To settle the k = 1 case, Squier then introduced the invariant of finite derivation
type, or FDT, in a subsequent paper [11]. The key result is that a monoid given by
a finite complete presentation has FDT, while Sy, with 5 generators and 5 relations,
does not have FDT, and thus, no finite complete presentation:

Sy :={a,b,t,x,y|ab =1 za = atx,xt = tx,zb = bx,xy = 1)

We review the definition of FDT in Section 3. We do not define FPg; it suffices
to note that FDT implies FPs, so in fact S is not FDT for all k£ > 1 [12].

Finite derivation type is not a sufficient condition for a monoid to admit a
finite complete presentation. Katsura and Kobayashi discovered this monoid with
decidable word problem and FDT, but no finite complete presentation [13]:

(a,bi,c1,dy, by, ca,dz, b3, c3,d3 | bia = aby,bya = aby, bsa = abs,
c1b1 = ¢1b1, c2by = 101,
bidy = bidy, bady = bidy)

Can we have fewer defining relations than Squier’s S;? It seems the previous

record was three relations. Lafont and Prouté exhibit this non-FP3 monoid [14]:

{a,b,c,d,d'|ab= a,da = ac,d' a = ac)
Cain et al. show that this monoid does not have FDT [15]:
(a,b,c|ac = ca,bc = cb, cab = cbb)

Every one-relation monoid (A | u = v) has FDT [16]. It remains an open question
if every one-relation monoid has a finite complete presentation or a decidable word
problem [17].

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 3

2. PRELIMINARIES

This article assumes some familiarity with finitely-presented monoids and string
rewriting; this section is too dense to serve as a proper introduction to the topic.
A good reference can be found in [18].

Definition 2.1. A monoid is a set M with an associative binary operation -;; and
identity element 1p7. A monoid homomorphism ¢: M — N satisfies ¢(1pr) = 1n,
and ¢(z -pm y) = ¢(x) -~ ¢(y) for all z, y € A*.

Definition 2.2. If A is any set, the free monoid A* is the set of all finite sequences
of elements of A. For our purposes, the alphabet A is always finite.

The length of x € A* is denoted by |z| > 0.

An z € A is a letter and an x € A* is a word.

The unique empty word of length 0 is denoted by 1.

We view each letter x € A as a word of length 1 in A*.

The concatenation of words and y is denoted xy or x - y.

If x € A*, then 2™ means x concatenated with itself n times.

A word u is a factor of a word w if w = zuy for some z, y € A*.
The equality operator = denotes graphical equality of words in A*.

A monoid presentation is a pair (A | R), where A is a set, and R C A* X A* is a set
of ordered pairs of words. A presentation is finite if A and R are finite sets.

e A rewrite step (over R) is a quadruple z - (u,v) - y, where x, y € A* are
called the left and right whiskers, and either (u,v) or (v,u) € R. The source
of this rewrite step is the word xuy, and the destination is xvy.

o A rewrite path is either an empty rewrite path 1, for a word w € A*, or
the composition of one or more rewrite steps p = s; > --- > s, where the
source of each step is identical to the destination of the previous step.

e The monoid congruence < g relates all pairs x, y € A* such that there is a
rewrite path from x to y.

e The equivalence class of z € A* is denoted by [z]g. The equivalence classes
of &g then have the structure of a monoid, with identity element [1]z and
binary operation [z]g - [y]r := [z - ¥] &

e A finitely-presented monoid is one that is isomorphic to a monoid obtained
in this way, from a finite presentation.

We also need to consider rewriting steps that only apply a rule from left to right:

A rewrite step x- (u, v) -y is positive if (u,v) € R, and negative if (v,u) € R.

A rewrite path is positive if every step taken is positive.

e The reduction relation =g relates all pairs x = y such that there is a
positive rewrite path from x to y.

e The reduction relation =g is terminating if there is no infinite sequence
of positive rewrite steps where the source of each step is identical to the
destination of the previous step.

e The reduction relation =g is confluent if whenever x =g y and = =5 z,
there exists a word w € A* such that y =g w and 2z =g w.

e A word x € A* is irreducible if x = y implies that x = y.

e If y is irreducible and x =g y, we say that y is a normal form for x.

4 SLAVA PESTOV

A monoid presentation (A|R) is complete if = g is terminating and confluent.
A finite complete presentation is one that is both finite, and complete. In this case,
every equivalence class of < has an effectively computable, unique normal form.

Knuth-Bendiz. A sufficient condition for the termination of a reduction relation =
is that for each (u,v) € R, we have u > v for some suitable reduction order on A*:

Definition 2.3. A reduction order on A* is a well-founded linear order that is
closed under translation, so u > v implies that zuy > zvy for all u, v, z, y € A*.

The most important reduction order for our purposes is the shortlex order. We
take a linear order on the alphabet A and extend it to pairs of words z, y € A* as
follows. If |z| < |y|, then x < y; otherwise if |z| = |y|, we compare the letters of x
and y from left to right.

Finally, to establish the confluence of a terminating reduction relation, we will
need Newman’s lemma [19], which we recall after some preliminary definitions.

Definition 2.4. Two words u, u’ € A* overlap if one of the following is true:
(1) The first has a suffix equal to a prefix of the second, so u = zy and v’ = yz,
for some words x, y, z, with the overlapping piece y non-empty.
(2) The second contains the first as a factor, so v’ = zuy, for some words z, y.

Definition 2.5. Let (A|R) be a monoid presentation. Two rules (u,v) € R and
(u',v") € R overlap if their left-hand sides overlap as above.

e In our examples, only overlaps of the first kind will occur. (In the second
case, we can always remove one of the rules from the presentation.)

e The two ways of reducing the overlap word give us a pair of positive rewrite
steps, called a critical pair.

e An important fact is that the left-hand sides of two rules may overlap more
than once, at different positions; this yields distinct critical pairs.

e A critical pair is t¢rivial if both sides can be reduced to the same word by
applying the normal form algorithm.

Lemma 2.6. A terminating reduction relation = is confluent if and only if all
critical pairs are trivial.

Thus, we can use this result to show that a terminating reduction relation is
confluent by considering all overlaps among the rules, and for each one, exhibiting
a pair of positive rewrite paths (I,r), where the source of each path is the overlap
word, and the destination is any common descendant of the two sides.

The above also forms the basis for the Knuth-Bendix algorithm [3, 4, 5]. We check
for confluence first, and repair any violations we find by adding new rules. This
can introduce new confluence violations, so the process repeats, possibly forever.

3. FINITE DERIVATION TYPE

We now attempt to summarize Squier’s paper [11]. The essential idea is this.
A rewrite path from z to y is a proof that z < y, and there may be more than
one such path, if there are “multiple ways” of rewriting x into y. We say that two
rewrite paths are parallel if they have the same source and same destination, and a
presentation has finite derivation type if this parallelism relation, which describes
“all the ways” of rewriting with those rules, is finitely generated. Finally, in the
case of a complete presentation, we can explicitly describe this generating set.

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 5

The derivation graph of a monoid presentation (A | R), denoted by I'(A| R), is a
directed graph whose vertices are words in A*, and edges are rewrite steps formed
from the defining relations of R. Our next goal is to develop a “two-dimensional
algebra of rewrite paths” on this graph.

o A rewrite path as defined earlier is a path in I'(A| R), and an equivalence
class of the monoid congruence < p is a connected component of I'(A | R).

e The set of all paths in I'(A | R) is denoted by P(A|R).

e The length of a rewrite path is the number of steps taken.

e The composition of p; and ps, where src(py) = dst(py), performs the steps
of py followed by ps. The resulting path is denoted by p1 > pso.

e The inverse of a rewrite step - (u,v) -y is x - (v,u) - y. The inverse p~* of
a rewrite path p performs the inverse of each step of p in reverse order.

e The left and right whiskering actions of A* on P(A|R) extend the left or
right whiskers of each step in a path by concatenation with a word z € A*:

z-x- (u,v) - y:=zr- (u,0v) y
z-(u,v) -y -z:=x-(u,v)- yz

e Whiskering - has higher precedence (binds tighter) than composition .

e The parallelism relation is denoted by ||. Recall that it relates all p, ¢ such

that src(p) = src(q) and dst(p) = dst(q).
e The parallelism relation || is an equivalence relation on P(A|R).

Definition 3.1. Let (4| R) be a monoid presentation, and let & be an equivalence
relation on P(A | R). We say that ~ is a homotopy relation on P(A | R) if it satisfies
the following properties:

(1) (Parallelism.) If p ~ ¢, then:

rla

(2) (Composition.) If p = ¢, dst(r) = src(p), and dst(p) = src(s), then:

roprSsSAT>E>S
(3) (Whiskering.) If p ~ ¢, and z, y € A*, then:

TopYyRT-q-yY
(4) (Complementary steps.) If s is a rewrite step, then:

s>ps e Tsre(s)
(5) (Interchange of disjoint steps.) If s; and sy are two rewrite steps, then:
81 - src(sg) > dst(sy) - so A~ src(sy) - so > s - dst(sa)

Some immediate consequences of the above:

(1) The parallelism relation || is a homotopy relation on P(A| R), and it is the
largest homotopy relation, in the sense that every homotopy relation on
P(A|R) is contained in ||.

(2) The set of all homotopy relations on P(A|R) is closed under arbitrary
intersection and directed union.

From (1) and (2), it follows that if B is any subset of ||, there is a unique
smallest homotopy relation on P(A|R) that contains B. This is the homotopy
relation generated by B, and we denote it by ~p below.

6 SLAVA PESTOV

Just as a monoid congruence can be understood in terms of rewrite paths between
words, we can show that the generated homotopy relation ~p relates all pairs of
paths where the first path can be obtained from the second path by a finite sequence
of two-dimensional elementary transformations, described in the following lemma.
This is Theorem 3.4 in [11], or Proposition 2.4 in [20].

Lemma 3.2. Let (A| R) be a monoid presentation, let B C ||, and suppose we have
two paths p, ¢ € P(A|R). We have p &~p ¢ if and only if there exist a sequence of
paths p1, ..., p, such that p = p1, ¢ = p,, and each p;41 is obtained from p; by one

of the below elementary transformations:

(1) Removal of complementary steps s> s~ 1:

pi=pi>(s>s) p]
Pit1=Dp;>p;
(2) Insertion of complementary steps s> s~ .

(3) Interchange of two disjoint steps src(si) - s2 and sy - dst(sz2), so the leftmost
rewrite is now performed first:

pi = P> (src(s1) - s2> 81 - dst(sa)) > p
pit1 = P> (s1 - src(sg) > dst(sy) - s2) > pl
(4) Interchange of two disjoint steps in the other direction.

(5) Positive replacement from B, so for some (I,7) € B, and z, y € A*, and
paths p}, p!/ satisfying the necessary conditions on source and destination:

pi=pi> (- 1-y)ep]
pit1 =p;> (x 7 y) e p
(6) Negative replacement from B, so as above but with p; and p;+1 swapped.

Proof. Let’s say that =p is the equivalence relation on P(A|R) that relates all
pairs of paths that can be joined by a sequence of elementary transformations,
listed above. We argue that =g is the same relation as ~p.

Suppose that p =p ¢. The source of each elementary transformation is parallel
to the destination, and an induction on the number of elementary transformations
from p to g shows that p || ¢. Furthermore, the source and destination of each
elementary transformation is actually equivalent under ~g. So =p C ~p as a
direct consequence of Definition 3.1. Thus, p ~p ¢. In other words, =g C ~p.

Now, suppose that (p,q) € B. There is an elementary transformation of type (5)
with source p and destination ¢, so p =p q. Thus, B C =p. Furthermore, it is easy
to see that =p itself satisfies the conditions of a homotopy relation. Together these
two facts imply that ~p C =p. O

When B = @ in Lemma 3.2, we get elementary transformations of the first four
kinds only, so two paths are equivalent under ~4 if each one can be obtained from
the other by some combination of inserting and removing complementary rewrite
steps, and interchanging disjoint rewrite steps.

Definition 3.3. The null homotopy relation is the homotopy relation generated
by the empty set. Instead of writing ~4, we denote it by ~.

Note that ~ is the smallest homotopy relation, in the sense that every homotopy
relation contains ~. We can now define the key concept of this section.

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 7

Definition 3.4. A monoid presentation (A |R) has finite derivation type if some
finite subset B C || generates || as a homotopy relation on P(A|R).

We summarize our notation for homotopy relations before we continue:

= Some homotopy relation.

~ The null homotopy relation.

~p Homotopy relation generated by B.
I The parallelism homotopy relation.

Circuits. Under the preceding definitions, a homotopy relation is a generated by a
set of pairs of parallel paths. However, it is sometimes more convenient to work
with a set of circuits in the derivation graph instead:

o A rewrite path ¢ € P(A| R) is a circuit if src(c) = dst(c).

e We say src(c) is the basepoint of the circuit.

e The set of all circuits in I'(A| R) is denoted by C(A|R).

Every homotopy relation can be generated by a set of circuits. In the below, I

is some arbitrary index set.

Definition 3.5. If B := {c;}ics is a subset of C(A|R), let B := {(ci, lerc(c,)) bier-
Note that B C ||. The homotopy relation generated by B is defined as the homotopy
relation generated by B in the earlier sense.

Lemma 3.6. If B := {(p;, ¢;) }icr1 is a subset of ||, then B := {qibpjl}iej generates
the same homotopy relation as B.

Proof. First, suppose that ¢ € B. We will show that ¢ ~p 1gc(). By definition,
c=q '>Pi_1 for some i € I, so (p,q) € B. Since p ®p ¢ and =p is a homotopy
relation, we also have p>p~! ~p ¢>p~!, or in other words, c ~p Lsre(e)-

For the other direction, suppose that (p, q) € B. To see that p ~p ¢, notice that
p>q ! xp Lsre(p)» and compose both sides on the right with q. (]

We give a name to those sets of circuits that generate the parallelism relation ||
as a homotopy relation.

Definition 3.7. Let (A| R) be a monoid presentation. A subset B C C(A|R) is a
homotopy base for (A | R) if B generates || as a homotopy relation.

The next lemma reformulates Lemma 3.2 in terms of circuits. The idea is that up
to null homotopy, an arbitrary circuit ¢ € C(A | R) can be constructed by “gluing”
together a combination of the circuits in a homotopy base, suitably whiskered. This
appears as Lemma 2.1 in [16], or Proposition 2.2 in [20].

Lemma 3.8. Let (4| R) be a monoid presentation, and let 5 C C(A|R) be a set
of circuits. Then B is a homotopy base if and only if for any circuit ¢ € C(A|R),
there exist a series of:

(1) words z;, y; € A*,

(2) paths p; € P(A|R),

(3) circuits ¢; € B,

(4) and integers e; € {—1,1},
satisfying:

€n

cpib (g y) Py e e > (T 4 Yn) DD,

with src(p;) = src(c) and dst(p;) = x; - src(q;) - y; foreach i =1,...,n > 0.

8 SLAVA PESTOV

Proof. (“If”) Starting from the assumption that every ¢ € C(A| R) can be expressed
as a combination of circuits in B, we can show that B is a homotopy base as
follows. Take arbitrary p, ¢ € P(A|R) such that p || ¢, and let ¢ := g>p~!. Since
c € C(A|R), we can write it as a combination of circuits from B.

For each term z; - ¢;* - y; appearing in the above expression for ¢, we have ¢; € B,
and thus z;-¢;*-y; =B lastp,. After contracting each such term, we see the remaining
p; and p{l terms then cancel out, so ¢ ~p5 lgc(). Composing both sides on the
right by p, we get ¢ =p p.

(“Only if”) Suppose that B is a homotopy base, and let B := {(c;, lgc(c,))} be
the corresponding set of pairs of parallel paths. Suppose we are given an arbitrary
c € C(A|R). Since B is a homotopy base, we have ¢ ®p lgc(c). By Lemma 3.2,
there exists a series of elementary transformations from ¢ to lgc(.), using B.

We perform an induction on the number of transformations. In the base case,
¢ = lgc(c), and we're done. Otherwise, we can assume that ¢ can be transformed
into ¢’ by a single elementary transformation, while ¢ can be transformed into
Lsre(c) in one fewer step than c.

By induction, the result already holds for ¢/, so we can write ¢’ as a combination
of whiskered circuits from B:

¢ pr> (gt) B pr BB (T g7) DDy
We consider each kind of elementary transformation from ¢’ to c:
(1) If ¢ is obtained from ¢ by inserting or removing complementary rewrite

steps, or interchanging disjoint rewrite steps, then ¢’ ~ ¢, so we’re done.
(2) Otherwise, for some (I,7) € B or (r,l) € B, we have:

d=sv(x-l-y)t
c =s>(x-r-ypt

By definition of B, one of [or r is an element of B, while the other one is
the empty path 1. If [€ B, then ¢ = s>, and so:

cxdpt o (z- T y)t

If r € B, then ¢ = s> ¢, and so:

cdpt o (z-rhoy) ot

In every case, ¢ again has the required form. This closes the induction. O

With the preliminaries out of the way, we state the two key results of Squier’s
paper without proof.

The first is that the property of finite derivation type is an invariant of the
presented monoid, independent of choice of finite presentation. We don’t actually
need this fact, but we recall it for posterity. This is Theorem 4.3 in [11].

Lemma 3.9. Suppose that (A|R) and (C'|S) are two finite presentations that
present isomorphic monoids. Then (A | R) has finite derivation type if and only if
(C'] S) has finite derivation type.

Sketch of Proof. We can obtain (A | R) from (C|S) by a finite sequence of Tietze
transformations (adding or removing a generator equivalent to a word, adding or
removing a rule given by a rewrite path over the remaining rules). For each kind of
elementary Tietze transformation, one can translate a finite homotopy base for the
source presentation into a finite homotopy base for the destination presentation. [

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 9

The second key fact we state without proof is the connection between complete
presentations and homotopy relations. This fact, we do need. For the proof, see
Theorem 5.2 in [11].

Definition 3.10. Let (A | R) be a complete presentation. The set of critical circuits
in I'(A| R) is the set of all rewrite paths of the form r >1"!, as (I,r) ranges over
the pairs of positive rewrite paths resolving each critical pair.

Lemma 3.11. If (A| R) is a complete, the set of all critical circuits in T'(A| R) is
a homotopy base for (A|R).

The above is true even when R is infinite; we get an infinite homotopy base in
that case. However, when R also happens to be finite, we get Theorem 5.3 in [11]:

Lemma 3.12. Suppose that (A|R) is finite and complete. Then the presented
monoid has finite derivation type.

Proof. Since (A|R) is complete, the set of critical circuits in T'(A|R) forms a
homotopy base by Lemma 3.11, and since R is finite, this set of circuits is finite. [

Thus, if we can show that some finite presentation of a monoid does not have
finite derivation type, we can conclude that this monoid does not have a finite
complete presentation.

Mapping of rewrite paths. We need two more technical results. The first allows us
to translate the critical circuits of an infinite complete presentation into a homotopy
base for a finite, but not necessarily complete, presentation of the same monoid.

In Squier’s paper, the below is a consequence of Theorem 3.6, Corollary 3.7,
and Lemma 4.4. Since we skip the details of those proofs, we give a self-contained
argument for our special case.

Definition 3.13. Let (A|R) and (A | R) be any two monoid presentations, sharing
the same alphabet. A function ®: P(A|R) — P(A|R) is a mapping of rewrite
paths if it satisfies the following conditions:

(1) (Compatibility.) For all p € P(A|R):
src(®(p)) = sre(p)
dst(®(p)) = dst(p)

(2) (Composition.) For all p, ¢ € P(A|R):

o(prq) = 2(p) > 2(g)
(3) (Whiskering.) For all p € P(A|R) and z, y € A*:
O(x-p-q)=2-2(p)-¢q

(4) (Inverses.) For all p € P(A|R):
o(p~) =2(p)

(5) (Identity.) For all x € A*:

(1) =1,

Notice how a mapping of rewrite paths is completely determined by the image of
each (u,v) € R, viewed as a positive rewrite step with empty whiskers.

10 SLAVA PESTOV

The above describes a more general situation than we need. We will impose two

additional conditions on (A |R) and (A|R):
(1) We require that R and R generate the same monoid congruence on A*.
(2) Also, R must be a subset of R.
Under these conditions, for each (u,v) € R\ R, there exists a rewrite path that we
denote by py., € P(A|R), with src(py,,) = v and dst(p,) = v.

From these paths p,, ., we can define a mapping ®: P(A | R) — P(A|R) which
maps each element of R to itself, and each (u,v) € R\ R to the corresponding path
Pup- We can use this mapping to transform a homotopy base for (A | R) into a
homotopy base for (A | R):

Lemma 3.14. Let ®: P(A|R) — P(A|R) be as above. If some set B generates ||
as a homotopy relation on P(A| R), then ®(B) generates || as a homotopy relation
on P(A|R), where we define ®(B) as the set of pairs of paths (®(1), ®(r)) obtained
by applying ® to both sides of each (I,r) € B.

Proof. Under the conditions, P(A|R) C P(A|R), and @ is the identity mapping
on this subset P(A|R). Let B := ®(B).

Suppose that p || ¢ for some p, ¢ € P(A|R). We must show that ¢ =g q.
Since B generates || as a homotopy relation on P(A|R), we have p ~p5 ¢. By
Lemma 3.2, we can exhibit a sequence of elementary transformations involving B,
transforming p into ¢. By induction, it suffices to show that in the case of a single
elementary transformation, we have p ~p q. We consider each kind of elementary
transformation in turn:

(1) If p is obtained from ¢ by inserting or removing complementary rewrite
steps, or by interchanging disjoint rewrite steps, then we actually have
p ~ g, and so in particular, p ~p q.
(2) Otherwise, p is obtained from ¢ by a positive or negative replacement from
B. So, for some (l,r) or (r,1) € B, and z, y € A*:
p=p'v(@ lyep
g=q> (@ r-y)>q’
We have either (®(1),®(r)) € B or (®(1),®(r)) € B from the definition
of B, and since ~p is a homotopy relation:
po(e-l-y)ep’ =g v(@-ry) g’

We see that p ~p ¢ for each kind of elementary transformation, and by induction,
p ~p q for arbitrary p and ¢ such that p || ¢. Thus, B generates || on P(A|R). O

If we start with a set of circuits B and apply the above lemma to the set B C ||
formed from B as in Definition 3.5, we get the same thing in terms of circuits:

Lemma 3.15. Let ®: ~P(A|]~%) — P(A|R) be as above. If B C C(A|R) is a
homotopy base for (A | R), then ®(B) C C(A| R) is a homotopy base for (A|R).

Our final preliminary lemma states that if a monoid presentation has finite
derivation type, then every homotopy base for this presentation already contains a
finite homotopy base. Thus, to show that a monoid does not have finite derivation
type, it suffices to exhibit a finite presentation, with an infinite homotopy base, no
finite subset of which is a homotopy base.

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 11

Lemma 3.16. Let (A | R) be a monoid presentation, and let B and C be two subsets
of C(A|R). If B is a finite homotopy base for (4| R), and C is any homotopy base
for (A| R), then there is a a finite subset C' C C such that C’ is itself a homotopy
base for (A| R).

Proof. Since C is a homotopy base, we can express each circuit of B in terms of C,
in the sense of Lemma 3.8. Since B is finite, we only need a finite subset C’ C C to
express everything in B. But B is a homotopy base, so every ¢ € C(A|R) can be
expressed in terms of the circuits of C’, and so C’ is a homotopy base. O

4. THE MAIN RESULT

Theorem 1. The monoid M := (a,b|aaa = a,abba = bb) does not have finite
derivation type, and thus, no finite complete presentation.

The proof takes the rest of this section. Here is a summary:

(1) We introduce a longer presentation (A | R) of M that is easier to work with.
(2) We extend this presentation (A|R) to an infinite complete presentation
(A|R*). An aside will establish that M has a decidable word problem.
(3) Considering the overlaps between the left-hand sides of R* yields a set of
critical circuits in I'(A | R*). By Lemma 3.11, this infinite set of circuits is
a homotopy base for (A | R*).
(4) We define a mapping of rewrite paths ®: P(A|R>) — P(A|R), which
sends each rewrite rule in R \ R to a fixed rewrite path over R.
(5) We apply @ to each critical circuit in T'(A| R*). By Lemma 3.15, this set
of circuits, that we call C, is a homotopy base for (A | R).
(6) We minimize C somewhat, to get a homotopy base B C C. We then show
that no finite subset B’ C B is a homotopy base for (A | R).
(7) We conclude that M does not have finite derivation type, by Lemma 3.16.
Let A := {a,b} and R' := {(aaa, a), (abba,bb)} denote the alphabet and defining
relations of our original presentation of M. To construct our infinite complete
presentation (A | R*), we start from this presentation of M instead:

(a,b| aaa = a,bba = abb, aabb = bb)
Henceforth, this set of three rules above will be called R := {«, 5,70}, where:
a = (aaa,a)
B = (bba, abd)
7o := (aabb, bb)
Our first task is to prove that (A|R) and (A | R’) present the same monoid.

Lemma 4.1. Both R and R’ generate the same monoid congruence on A*.

Proof. First, we show that (abba,bb) € R’ belongs to <. We have abba < bb,
because:
abba < aabb <k bb

Next, we're going to show that 8 and vy € R belong to < /. We have bba < g abb:
bba & i abbaar < aaabbaa < g aabba < i abb

and aabb <R/ bb:
aabb < g aaabba < g/ abba <R/ bb

12 SLAVA PESTOV

Thus, ©r = &g as sets, and the mapping that sends each letter to itself induces
a monoid isomorphism between the monoids presented by (A| R) and (A|R’). O

In the rest of this section, this monoid congruence will be denoted by <.
Notice how rule § says that bb commutes with a, and since bb always commutes
with b, we actually have zbb < bbx for all x € A*. In particular, (ba)"bb < bb(ba)™
for all n > 0. Since also aabb < bb via -y, we have, for all n > 0:
aa(ba)™bb < aabb(ba)" < bb(ba)" < (ba)™bb
First, we write down an explicit rewrite path m, for this equivalence.
Definition 4.2. For each n > 0, we inductively define the rewrite path m,:
To =7
Tni1 = aa(ba)™b- B~ >, - ba (ba)™b - B
We have src(m,,) = aa(ba)™bb, and dst(w,,) = (ba)™bb. An induction on n also shows

that the path m,; is well-formed, in that the source of each step is in fact the
destination of the previous step.

Now, let’s take the three rules of R, and run Knuth-Bendix completion for “an
infinitely long time.” This process generates an infinite family of rules ~,, where
each rule is defined by the path m,. More precisely:

Lemma 4.3. The monoid M admits an infinite complete presentation (A |R>),
where R := {a, 8} U {7y }n>0, and:

a := (aaa,a)

B := (bba, abd)

Y := (aa(ba)"bb, (ba)™bb) foralln >0
In the rest of this section, = will denote the reduction relation generated by R*°.
Proof. We must first show that (4| R>) is a presentation of (A|R), and then
establish that = is terminating and confluent.

(Presentation.) Notice that R = {«, 8,70}, so R C R, while src(m,,) = src(vy)
and dst(my,) = dst(vy,), for all n > 0. It follows that R and R generate the same
monoid congruence on A*.

(Termination.) We use the shortlex order with a < b to establish termination.

aaa aaa
1) avs taa (55) @ vs. Yy aa(ba)"bb
9 aaa bba
(2) avs « waa (6,,) B vs. v aa(ba)™bb
bba aa(ba)™bb
(3) pBvs a: waa (7n) yn vs. B: bba
 aaa aa(ba)"bb
(4,) «a vs. Yy aa(ba)"bb (8.) Yn vs. [: bba

F1GURE 1. Overlapping left-hand sides in R*°.

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 13

(L1, R1): (L2, R2): (L3, R3):
bbaaa
aaaa aaaaq
8- aaﬂ
bb-o
a~a“ “wa a-aa“ aa-a abbaa
a-B- a
aa aaa
aabba — bba
(L4, R4,,): (L5, R5,,): (L6,,, R6,):
bbaa(ba)™bb
aaa(ba)™bb aaaa(ba)™bb
ba)"bbﬂ

a~(ba)"bb“ “a"}/n a-a(ba)™bb “aa Y abba(ba)™bb oo
a-f- (ba)"bbﬂ

a(ba)™bb aa(ba)™b

aabb(ba)"bb ﬁ bb(ba)”bb

(L7, R70):

aabba

/

a-bb

/ aaabb
N

(L7n+1a R7n+1):

aa(ba)"*1bba
v% N)”ba B
(ba)™babba aa(ba)"baabb
(ba)"ba»,@ﬂ ﬂaa(ba)"b»'yo
(ba)™baabb aa(ba)™bbb
(ba)™b-vo Yn-b
(ba)™bbb
(L8, R8,,):

aa(ba)™bbba

W aa(ba)™b-B

(ba)"bbba aa(ba)™1bb

(ba\ Yn+1

(ba)"*1bb

\/

FIGURE 2. Resolution of critical pairs in I'(A | R*).

14 SLAVA PESTOV

(Confluence.) Figure 1 lists all overlapping rules in R>°. We get the three
critical pairs (1), (2), (3) by considering overlaps between « and (3, together with
five infinite families labeled (4,,), (5,.), (6,), (7,), and (8,,), by considering overlaps
involving the left-hand side of ,, and one of the other two rules.

Figure 2 shows that = reduces both sides of each critical pair to the same word.
We use the leftmost reduction strategy, where we always choose the positive rewrite
step with the shortest left whisker. We label each pair of paths (L1, R1), (L2, R2),
(L3, R3), (L4,, R4,,), and so on. We observe that the rewrite paths resolving the
critical pair (7,) take one form if n = 0, and another if n > 0, so we split the two
cases into (L79, R7p) and (L7,,41, R7,,41), to deal with them separately.]

In fact, (A| R*) is a regular complete presentation of M, in that the set of
left-hand sides of R is a regular set. We do not need to discuss regular sets
in what follows, but one immediate corollary is that M has an easily decidable
word problem, using regular expressions. Here is a Perl program to compute the
R*>-normal form of a list of words, given as command-line arguments:

foreach (QARGV) {
while (s/aaa/a/ || s/bba/abb/ || s/aa((ba)+*bb)/\1/) {}
print $_, "\n";

}

The while loop always terminates, and two words are equivalent if and only if they
have the same R*°-normal form.

THE DEGREE MAPPING

The reduction relation = associated with (A | R*) gives us a normal form for each
equivalence class of words. We need to take a look at one specific property of these
normal forms that we will need later.

Suppose that we have a pair of words with x < y, and = does not contain bb as
a factor. Both sides of 8 and vy contain bb, so the only rewrite step with source x
must be an application of «. It follows that the destination of any step with source
x also cannot have bb as a factor, so by induction we conclude the same about .

Thus, the fun behaviors in M only manifest on equivalence classes of words that
involve bb. Furthermore, when we compute the R*-normal form of a word, the
distinct bb’s accumulate at the end. For example, repeated application of 5 shows
the following, with the right-hand side being irreducible:

ba)™bb(ba)™bb = (ba)™ " bbbb
(ba)™bb(ba) (ba)

Definition 4.4. If z € A* is any word, the degree of x, denoted deg(z), is the
largest integer k& > 0 such that the R>-normal form of = ends with the suffix (bb)¥.

To continue the preceding example, we have:
deg((ba)™bb(ba)"bb) = deg((ba)™ " bbbb) = 2

Remark 4.5. By definition, z < y implies that deg(z) = deg(y). However, “deg”
is not a monoid homomorphism, because in general, deg(zy) # deg(x) + deg(y).
One case where this fails in a strong way if we take x := (ab)* and y := (ba)*.
We have deg(x) = deg(y) = 0, while it is not hard to see that zy < (bb)¥, and so
deg(zy) = k.

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 15

Indeed, if k£ = 0, this is trivially true, and if £ > 0, the claim follows by induction,
because:

zy = (ab)*(ba)* = (ab)*tabba(ba)k~*

(B8) = (ab)*~taabb(ba)*~!
(7o) = (ab)"bb(ba)k !
(8, repeatedly) = (ab)*~1(ba)*1bb

Lemma 4.6. However, the following statements are true:

(1) If w has a suffix (bb)* for some k > 0, then deg(w) > k.
(2) For all z, y € A*, we have deg(xzy) > deg(x) + deg(y).

Proof. The first claim amounts to saying that = only increases the number of bb’s
at the end of a word, so the R*°-normal form has the longest suffix of bb’s, among
all words in the equivalence class of w. Thus, we assume that w = w’ - (bb)¥, and
also that w = z; we must then show that z = 2’ - (bb)*, for some 2’. By induction,
it is sufficient to say this z is obtained from w’ - (bb)¥ by a single positive rewrite
step. We consider each possibility in turn:

e For a step - a -y, we have w = xzaaay and z = zay, so w' = zaaay’ for
some ¢/, and y =y’ - (bb)*, thus z = way’ - (bb)*.

e For a step z - B -y, we have w = zbbay and z = zabby, and once again,
w' = wbbay’ for some 3, and y =y’ - (bb)¥, and thus z = zabby’ - (bb)*.

e For a step x -7, -y, we have w = zaa(ba)"bby, and z = x(ba)"bby. We have
bby =y - (bb)¥ for some ¥/, so z = x(ba)™y’ - (bb)*.

The second claim is a consequence of the first. Suppose we are given a pair of
words z, y € A* such that x = 2/(bb)™ and y = y/'(bb)" for some R>°-irreducible
words x’, 3/, with m and n chosen to be maximal, so neither 2’ nor y’ end with
bb. By definition, we have deg(z) = m and deg(y) = n. Also, zy < 2'y'(bb)™+™.
While 'y’ need not be irreducible, by the first claim, we have deg(zy) > m+n. O

A HoMmoToPY BASE

We can take each critical pair shown in Figure 1 and form a circuit in C'(A4| R™),
by composing the right-hand side with the inverse of the left. By Lemma 3.11, this
set of circuits is then an infinite homotopy base for (A | R*>°). Our next goal is to
transform this into a homotopy base for (4| R), by applying a mapping of rewrite
paths. Recall the discussion around Lemma 3.15.

Definition 4.7. The isomorphism between the monoids presented by (A | R*°) and
(A | R) gives us a mapping of rewrite paths ®: P(A|R*) — P(A|R).

Under @, a rewrite step involving rule «, S, or 79 maps to the same step in
P(A|R), while the image of a step involving v, for n > 0 is the path 7, with
appropriate whiskers:

Sz-a-y)i=z-a-y Px-al y)i=x-aly
D(x-f-y)=z-B-y D(z-p7y)i=z-7" -y
S(x-Yp-y)i=x-Tp -y Oyt y)i=a-m -y

The mapping extends to arbitrary paths in the obvious way:

D(s1>->sy)=P(s1)>--->D(sy,)

16 SLAVA PESTOV

1

C1 =a-aba " -a
C2 =aa-ara ' aa
C3 :bb~al>'yo_loal>aoﬁ*1~al>ﬁfl~aa

C4, =a-m,>a " (ba)"bb
C5, =uaa-m,>a '-a(ba)"bb
C6, =bb-m,>y" - (ba)"bbra-B7 - (ba)"bb> B - a(ba)"bb
C7y =aa-Bra-bb>B oyt a
C7,41 = aa(ba)"ba - B> aa(ba)™b -9 > 7y - b
> (ba)™b - vy ' > (ba)"ba - 71 > W;j_l -a

C8, =uaa(ba)"b- B mui1>(ba)"b- B >a - ba

TABLE 1. The infinite homotopy base C.

The mapping & satisfies the conditions of the aforesaid lemma, so can apply ® to
each critical circuit shown in Figure 1, to get a homotopy base for (A | R).

Definition 4.8. Let C be the set of circuits obtained by applying ® to each critical
circuit of I'(A| R*). We denote each circuit by C1, C2, C3, and so on:

C:={C1, C2, C3, C7y} u{C4,, C5,, C6,, C7,11, C8,},>0
Table 1 lists each rewrite path in C.

Some of the circuits in C do not contribute anything to the generated homotopy
relation. We're going to remove these redundant circuits from further consideration
now, by showing that a smaller subset B of C is also a homotopy base for (A|R).
This is going to involve some “trivial but technical” rewrite path algebra.

Lemma 4.9. The following subset B C C is also a homotopy base for (A | R):
B = {C]., (337 C40, 060, C70} U {C7n+1}n20

Proof. We claim that each circuit in C \ B is null-homotopic to a combination of
circuits from B:

1 C2 ~a-Cl>Cl-a
2 C4,, 1 ~ aaa(ba)"b- B~ > C4,, - ba> aaa(ba)™b - 3

(
(
(3 C5, ~a- C4,>C1- (ba)"bb
(
(

O — ~—

4 C6,,11 ~ bbaa(ba)"b- B~ > C6,, - ba > bbaa(ba)™b - 3
5) C8,, =~ lua(ba)nbbba

The conclusion will then follow by Lemma 3.8.

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 17

(1) We construct C2 from two copies of C1:

C2=aa-ara ' aa

-1 1

(inverses) ~aa-adla-a " caba-a-alba aa
=aa-ava-a t-alvla-a-a>a”t - ad
=a-la-aval-adpvla-aralad-a

=a-Cl1>Cl-a
(2) We construct C4,,1 from C4,,, and thus C4y by induction:

Cdpi1=a- T bt (ba)" b

= aaa(ba)”b . ﬁ_l >a-m, - bas[a(ba)"b- fat - (ba)" Db
aa(ba)™b 'sa-m,-bav [a™! - (ba)"bbba > aaa(ba)™b - F]

= aaa(ba)”b B >la-m,-ba>a~t - (ba)"bbba] > aaa(ba)™b - 3

(ba)™b 1> C4,, - ba > aaa(ba)™ -

(interchange)

= aaa(ba
(3) We construct C5,, from C4,, (and thus C4y), together with C1:

C5, =aa-m,>a ' -a(ba)"bb
(inverses) ~aa-m,>a-a" b (ba)"bb>a - o - (ba)"bb] >t - a(ba)"bb
=[aa-m,>a-a - (ba)"bb] > [a - a - (ba)"bb> ot - a(ba)"bb]
=a-[a-m,>a b (ba)"bb]>[a-a>at - a]- (ba)"bb
=a-C4,>C1- (ba)"bb

(4) We counstruct C6,,,;1 from C6,,, and thus C6y by induction. First, we will
look at this path:

Ani=75" (ba)"bba - B (ba)bb> B - a(ba)™bb

In fact, this is just the inverse of the left-hand side of the critical pair (L6,,, R6,), so
C6,, = bb-m,>\,. We observe that src(),) = bb(ba)"bb and dst(\,,) = bbaa(ba)™bd.
Furthermore, by interchange of disjoint rewrite steps:

bb(ba)™b - B> Apy1 > Ay, - ba> bbaa(ba)"b -

Now, we substitute 7,41 of Definition 4.2 into the definition of C6,,; and make
use of the above identity relating A, 11 with A,:
C6,41 = [bb- Tpt1] > Apt1
= [bbaa(ba)™b - 71> bb - m, - ba > bb(ba)™b - B] > Ayt

= bbaa(ba)™b- B~ > bb - 7, - ba > [bb(ba)™b - B> Api1]
(interchange) ~ bbaa(ba)"b - B >bb -7y, - ba> [\, - ba > bbaa(ba)™b - f]

= bbaa(ba)"b - > [bb - 7, - ba> Ay, - ba] > bbaa(ba)"b - 5

= bbaa(ba)"b - B > C6,, - ba > bbaa(ba)™b -

18 SLAVA PESTOV

(5) Finally, to see that the circuit C8,, is null-homotopic to the empty path at
its basepoint, we substitute in 7,41 and cancel complementary rewrite steps:

C8,, = aa(ba)"b- B>y > (ba)"b- B~ >t ba
= aa(ba)"b - B> [aa(ba)™b- 71 >, - ba> (ba)™b - B]
> (ba)"b- B o mtba
= [aa(ba)"b - B> aa(ba)™b - 7] >, - ba
> [(ba)"b- B> (ba)"b- B b7t - ba
(inverses) ~ 7, -ba>m, - ba
(inverses) >~ Laa(ba)bbba

Figure 3 gives a rewrite path for each circuit in B, lists their basepoints, and
illustrates each with a diagram. (I

A FREE ABELIAN GROUP

We now have our minimized homotopy base 3. However, B remains infinite. To
show that no finite subset of B generates || as a homotopy relation, we define a
“homomorphism” from rewrite paths into a certain free Abelian group.

We assume the reader has previously encountered free Abelian groups. We will
follow the usual conventions and denote the commutative group operation by +,
the inverse by —, and the identity by 0. The elements of a free Abelian group are
finite formal sums of integer multiples of the generators.

Definition 4.10. Let G be the free Abelian group generated by all pairs [u] @ [v]
as [u] and [v] range over the elements of M (or in other words, the equivalence
classes of <). That is, every element z € G has the form:

z= Zci ui] @ [vi]

for some n >0, ¢; € Z \ {0}, and u;, v; € A*.
The free monoid A* acts on the left and right of G:

Definition 4.11. Suppose that u, v, z € A*. We define the left and right action
of A* on the generators of G as follows, and then extend to all of G by linearity:

- ([u] © [v]) = [zu] @ [v]
([u] @ [v]) - 2 := [u] © [va]

It is important that the generators of G represent pairs of elements of M, and
not words in A*. For example, a typical element of G is z := [aa] @ [1] — [1] @ [1]-
While certainly z # 0, the fact that aaa < a means that a - z = 0, because:

a-z="1[aaa] @ [1] = [a] ® [1] =0
Every rewrite path in P(A| R) maps to an element of G:

Definition 4.12. We define a mapping ©: P(A| R) — G. Given a single rewrite
step, we assign a value of 0 if the step applies rule « or .

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE

C1 =a-aval-a
C3 :bb'ozbfyo_lwzba«B*l~al>ﬂ71~aa
C4y =a-yva t-bb
C6p =bb-y>y, -bba -7 bb>B71 - abb
C7 :aa~ﬁl>a-bbl>ﬂ_1>7(;1
C7,41 = aa(ba)™ba - B> aa(ba)™b - vy > 7, - b

> (ba)"b -y ' > (ba)"ba - B e

src(Cl) = aaaa src(C6p) = bbaabdb
src(C3) = bbaaa src(CTp) = aabba
src(C4g) = aaabb src(C7p11) = aa(ba)bba
C1: C3: C4,:
bb
aaaa (ﬁaa aaabb
al'“n abbaa < al bb a0
aaa abb
aabba ——— bba
Yo @
0602 C7O
bbaabb » aabba
abbﬁ Yoo w
bb-vo
abbabb aaabb
671
a7} bb \ -
aabbbb <——=—— bbbb abb
Yo -bb
C7n+11
) aa(ba)"*1bba
ﬂ% w)"baﬂ
(ba)™babba aa(ba)™baabb
(ba)"baﬂ*lﬂ ﬂaa(ba)"’b-'yo
(ba)™baabb aa(ba)™bbb
(ba)"z:%—\ %
(ba)™bbb

FI1GURE 3. The minimized homotopy base B C C.

19

20 SLAVA PESTOV

For a step that applies 7y, we form an element of G by pairing the step’s left
and right whiskers, and negate the result if the step is negative:
O -a-y):=0 O -at-y):=0
O(z-B-y):=0 6(3:-5’?3/):20
O-v-y):=[lely O v -y :=-[d
Finally, we extend © to arbitary paths p := s;>--- > s, by linearity:
Op) i=O(s1) + -+ O(s)

The mapping © “respects” the algebra of rewrite paths. From the definition, we
see that for p, ¢ € P(A| R) with dst(p) = src(q), and arbitrary words x, y € A*:

0(l,) =0
O(p>q) =0O(p)+06(q)
o) =-6(

O-p-y) =z-6(p)y
A further consequence of the above is that © is blind to null homotopy:
Lemma 4.13. Suppose that p, ¢ € P(A| R) satisfy p ~ ¢q. Then ©(p) = O(q).

Proof. By Lemma 3.2, there exist a sequence of paths pq,...,p, such that p = py,
q = pn, and each p; 1 is obtained from p; by inserting or removing complementary
rewrite steps, or by interchanging disjoint rewrite steps. We will see in each case
O(p;) = O(pi+1), and so our conclusion will follow by induction on n.

If p;41 is obtained from p; by inserting or removing complementary rewrite steps
s> s~ 1 we certainly have O(p;11) = O(p;), because O(s> s~ 1) = 0 for any rewrite
step s.

Now, if p;y1 is obtained from p; by interchanging disjoint rewrite steps, then
we're replacing s - src(sq) > dst(sy) - so with src(sy) - so > s1 - dst(sz), or vice versa.
If we apply © to both sides, we get:

O(s1 - src(sg) > dst(sy) - s2) = O(s1) - src(s2) + dst(s1) - O(s2)
@(src(sl) -S89 > Sy - dSt(SQ)) = @(81) : dSt(SQ) + SI’C(Sl) . @(Sg)
But src(s1) < dst(sy), and src(sz) < dst(sz), so O(p;) = O(pit1)- O

Table 2 lists the image under © of each circuit in B from Figure 3. Recall that
C7,,+1 is expressed in terms of ,, so to get ©(C7,.+1), we first need:

Lemma 4.14. For all n > 0, we have ©(m,) = [1] ® [(ba)"].

Proof. In the base case, ©O(my) = O(y) = [1] ® [1]. Otherwise, we assume that
O(m,) = [1] ® [(ba)"]. We show that the same statement holds for n + 1, by
substituting in Definition 4.2 for n + 1:

O(mni1) = O(aa(ba)™ - B~1) + O(7,, - ba) + O((ba)™b - B)
= 0O(m,) - ba
= ([l © [(ba)"]) - ba
= [11 ® [(ba)"*']

The conclusion follows for all n > 0 by induction. O

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 21

e(Cl) =0
0(C3) = -[1]® [
0(C49) =[a]®[1]
0(C7) =-[1]®[d]
O(C6) =

(

[6] @ [1] — [1] ® [bb]
(

C7ni1) = ([aa(ba)"b] © [1] — [(ba)"b] © [1])
+ ([@ [(ba)"0] — [1] @ [(ba)"baa])

(C)

TABLE 2. Applying O to each element of our homotopy base B.

MINIMALITY

Finally, we reach the crucial point in the proof of Theorem 1. We bring together the
degree map from Definition 4.4, the map © from Definition 4.12, and the homotopy
base B from Lemma 4.9, to show that no finite subset of B is a homotopy base.

Proof of Theorem 1. Suppose that, for the sake of contradiction, there is a finite
subset B’ C B such that B’ is a homotopy base for (A | R).

Since B’ is finite, there exists a k > 0 such that C7y; ¢ B’. Since B’ is a
homotopy base, by Lemma 3.8, we can construct C7,y; from the circuits in B,
meaning there exist words x;, y; € A*, paths p;, € P(A|R), circuits ¢; € B’, and
integers e; € {—1,1}, such that:

(1) CThyr=pid(z1-qf - y1)opy > D pu > (T - 45" yn) DDy,
By Lemma 4.13, we can apply © to both sides of equation (1). On the right-hand

side, each term ©(p;) cancels with the corresponding ©(p; 1), and what remains is
a summand for each ¢;, whiskered by the x; and y;:

(2) O(CTi11) = Z o(x

To get a contradiction from this, we prove a series of claims. The first claim is that
the left-hand side of (2) is not an element of a certain subgroup H C G.

Definition 4.15. Let H C G denote the subgroup of G generated by elements of
the form [za] ® [y] and [z] ® [ay], as z, y range over all equivalence classes where
deg(x) = 0 and deg(y) = 0. Note that deg(z) = deg(y) = 0 is equivalent to saying
that deg(xa) = deg(ay) = 0, and since every subgroup of a free Abelian group is
free Abelian, it also the case that H is free Abelian.

Claim. For all k£ > 0, we have ©(C7y41) & H.

Proof. Suppose that to the contrary, we can express O(C7gy1) in terms of the
generators of H, so there are integers c;, c;-, and degree zero words xi,yi,x37y;,
such that:

O(CTis1) =Y ¢+ [mia] @ [y:] + Y ¢ - [2)] @ [ay)]
i=1 J=1

22 SLAVA PESTOV

We quickly see this is impossible. We refer to Table 2, and consider any summand
of ©(C7x41), such as [(ba)¥b] ® [1]. There must exist an 1 <i<mor 1 <j<mn,
such that:
[ba)*0] @ [1] = [zia] @ [y:] ~ or [(ba)*0] © [1] = [27] © [ay(]

If the first case were to hold, we would have (ba)¥b < z;a. However, this is an
equivalence between degree zero words, so the only rule we can apply is «, and a
rewrite step that applies « cannot flip the last letter of a word from b to a. In
the second case, we get 1 < ay,. Here again we have a problem, because the

equivalence class of 1 contains no other words but the empty word itself. In any
case, O(C7,41) € H. O

The remaining claims show that every possible summand of the right-hand side
of equation (2) is an element of H, which is our contradiction.

These claims all rely on the fact that every word visited by the circuit on the
right-hand side of (1) must be in the equivalence class of src(C7x 1) = aa(ba)*+1bba.
In particular, this constrains the possibilities for each pair of whiskers z; and y;,
because for all i, we must have:

src(CTyy1) & @y - sre(qs?) - yi
Furthermore, deg(src(C7x11)) = 1, so for all ¢ in equation (2), we also have:
deg(x; - src(qi) - yi) =1

Lemma 4.6 then implies that deg(src(g;)) < 1. An immediate consequence:
Claim. The circuit C6, does not appear on the right-hand side of equation (2).
Proof. Since bbaabb = bbbb, we have deg(src(C6q)) = deg(bbbb) = 2. O

Now, we consider each remaining possibility for g;.
Claim. If ¢; = C1 for some ¢ in equation (2), then ©(z; - ¢; - y;) = 0.
Proof. Recall from Table 2 that ©(C1) = 0, because C1 does not involve . O
Claim. If ¢; € {C3, C4,, CT7;} for some ¢ in equation (2), then O(z;-¢; -y;) € H.

Proof. Let x := z; and y := y; to avoid clutter. If ¢; is as above, then inspection of
Figure 3 shows deg(src(g;)) = 1. Together with deg(z; - src(g;) - y;) = 1, this forces
deg(z;) = deg(y;) = 0. Now, from Table 2:

Ox-C3-y) =—-[z]®[ay] € H
O(z-Cy-y) = [za] ® [y] € H
Oz -CT7-y)=—[z] ®[ay] € H
The fact that these are all in H follows directly from Definition 4.15. (]

Hence the ¢; appearing on the right-hand side of equation (2) cannot be solely
drawn from the set {C1, C3, C4y, C7}, because then the entire right-hand side
would be an element of H, which would contradict ©(C7;41) € H.

We still haven’t ruled out the possibility that equation (2) has at least one
summand ¢; = C7,,41 for some other m > 0. Perhaps B’ simply contains some
finite number of circuits of this form? However, this is again insufficient. When
m # k, the whiskers x; and y; cannot both be empty, and a degree argument slightly
more elaborate than the previous claim will again imply that ©(z; - g; - y;) € H.

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 23

Claim. If ¢; = C7,,41 for some m > 0, then O(z; - ¢; - y;) € H.

Proof. Let x := x;, and y := y; to avoid clutter.

We know that C7r41 & B, so m # k. Therefore, src(CTxy1) ¢ src(CTpyt)-
However, we still have src(C7;41) < x - src(C7p11) - y, which forces |z| + |y| > 0.
As before, deg(src(C7,,41)) = 1 also forces deg(z) = deg(y) = 0.

If |z| > 0, then x cannot end with b, because if x = 2’b for some 2’ € A*, it
would imply that deg(z'd - src(CTpq1) - y) > 2, since deg(b - src(C7pmy1)) = 2:

b-src(CTpy1) = baa(ba)™ bba

(Y1) = bb(ab)™ abba
(8) = bb(ab)™ aabb
(70) = bb(ab)™bb
(B, repeatedly) = (ab)" bbbb

Similarly, if |y| > 0, then y cannot start with b, because if y = by’ for some y’ € A*,
it would imply that deg(z - src(CT,pnq1) - by') > 2, since deg(src(CTpyy1) - b) = 2:

src(C7pmi1) - b = aa(ba)™ bbab

(B) = aa(ba)™baabbb
(70) = aa(ba)™bbbb
(Ym) = (ba)™bbbb

Three possibilities remain:

(1) If £ = 2’a and y = 1, we see that two of the terms in ©(C7,,41) cancel
out, because aaa < a, and the remaining two terms are elements of H:

O(z - CTpy1 - y) = [’ aaa(ba)™b] @ [1] + [2'a] @ [(ba)™b]
— [2'a(ba)™b] @ [1] — [2'a] ® [(ba)™baa]
= [2'a] ® [(ba)™b] — [2'a] ® [(ba)™baa] € H

(2) If x =1 and y = ay’ instead, the other two terms cancel out, and we reach
the same conclusion:

Oz - CTpyr - y) = [aa(ba)™b] @ [ay'] + [1] @ [(ba)™bay/']
= [(ba)™0] ® [ay'] - [1] @ [(ba)"baaay']
= [aa(ba)™b] @ [ay'] — [(ba)™b] @ [ay'] € H
(3) Finally, if z = 2’a and y = ay’, everything cancels out:
O(w - Clnss -) = ['aaa(ba)™5] @ [oy'] + ['a] @ [(ba)™bay]
— [2'a(ba)b] @ [ay'] — [2'a] @ [(ba)™baaay']
=0eHd

In any case, O(z - C7.q1-y) € H. O
Thus, claims two through five show that the right-hand side of equation (2)

must be in H, which contradicts the first claim. We conclude that if B’ C B, and
C711 € B’ for at least one k > 0, then B’ is not a homotopy base for (A|R). O

24 SLAVA PESTOV

Total after symmetry: 19,575
Solved by shortlex a < b: 19,348
Trivial with 1 element: 1,188
Finite with > 1 element: 11,723
Infinite: 6,437
Solved by other reduction orders: 34
Solved by adding a generator: 190
Remaining unsolved: 3

TABLE 3. Two-generator, two-relation monoids of length < 10.

5. A MonNoID CENSUS

This section describes an investigation, loosely inspired by Bogdan Grechuk’s
wonderful book on the topic of Diophantine equations [21]. Like the word problem,
no general approach can solve all Diophantine equations, because the general case
is undecidable. Grechuk defines an ordering of all such equations, and then applies
various techniques to solve as many as possible, in order of increasing size.

Similarly, the non-FDT monoid {(a,b|aaa = a,abba = bb) was “discovered” by
enumerating all monoid presentations with two generators and two relations up to
length 10, and applying the Knuth-Bendix algorithm to each one in turn. The code
is in Swift compiler repository, in the form of a performance micro-benchmark:

https://github.com/swiftlang/swift/tree/main/benchmark/multi-source/Monoids

The program finds a complete presentation for all but three instances in the
enumeration, using 3 seconds of real time and 38 seconds of CPU time on an Apple
MacBook Pro with 14-core M4 chip, which suggests the feasability of exploring
larger enumerations. The program can also be compiled as a standalone binary,
which prints results to standard output. The output of a run can be found here:

https://factorcode.org/slava/monoids2210.txt

Table 3 shows a summary of the results, which will be explained below.

The first step is to filter out certain instances. While no attempt was made
to classify the monoids up to isomorphism, some obviously isomorphic instances
can be eliminated early on to avoid unnecessary work. Let’s say that two monoid
presentations are equivalent if we can get one from the other by some combination
of the following:

(1) Swapping the two sides of a defining relation.
(2) Swapping the two defining relations.
(3) Replacing a with b, and vice versa, within each defining relation.

If one instance in such an equivalence class admits a finite complete presentation,
they all do, so the filtering step selects one representative.

We also skip instances where a defining relation is the tautology u = u, or one
of the form w = v where both |u| <1 and |v| < 1. (This eliminates one instance in
particular, {(a,b|abbaab = ba,a = a), which reduces to a hard one-relation monoid
the author has yet to figure out. However, every one-relation monoid has FDT [16],
and the immediate goal here was to look for something not FDT.)

https://github.com/swiftlang/swift/tree/main/benchmark/multi-source/Monoids
https://factorcode.org/slava/monoids2210.txt

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 25

At this point, we are ready to start solving in earnest. We print the total number
of instances that must be solved after accounting for symmetry:

Remaining 19575
We then print some column headings:
n: presentation: cardinality: complete: strategy:

The main loop kicks off Knuth-Bendix completion on each remaining instance,
with parameters dictated by the current strategy. We use Swift’s Task API to
parallelize the work, by running 32 tasks at a time. Each task attempts completion
on a single instance. If we get a complete presentation within a fixed number of
iterations, we retire the instance and proclaim that it has been solved, by printing
out a row of output for each of the column headings above. These consist of:

(1) The instance number.

(2) The defining relations of the presentation.

(3) The cardinality of the presented monoid, or infinite if it is infinite.
(4) A finite complete presentation for the presented monoid.

(5) The generators added to get a finite complete presentation, if any.

The first strategy attempts Knuth-Bendix completion with the original alphabet
{a,b}, and the shortlex order a < b. This solves 19,348 instances—almost all.

Example 1. Let’s look at the first four instances. The first two present Zo,
1 aa=1,ab=1 finite:2 fcrs:b=a,aa=1

2 aa=1,ba=1 finite:2 fcrs:b=a,aa=1

then we have their free product, Zs * Zs,

3 aa=1,bb=1 infinite fcrs:aa=1,bb=1

which is followed by the free Abelian group Z:

4 ab=1,ba=1 infinite fcrs:ab=1,ba=1

FINITE MONOIDS

Notice how the first two monoids in our enumeration are finite. Every finite monoid
has a finite complete presentation [22]. From a finite complete presentation, we can
decide if the presented monoid is finite, and compute its cardinality, as follows:
(1) From Section 2, a word is irreducible with respect to a presentation (A | R)
if it does not contain the left-hand side of a rule from R as a factor.
(2) If the set R is finite, the set of irreducible words is a regular set, so it can
be recognized by a finite state automaton (for definitions, see [23]).
(3) We construct this automaton using the algorithm from Lemma 2.1.3 of [18].
(4) We first check if this automaton contains a cycle, in which case the set of
irreducible words is infinite.
(5) Otherwise, we count the number of words accepted by this automaton. This
gives us the number of elements in the presented monoid.

In our enumeration, there are 12911 presentations of finite monoids. All can be
solved by the first pass.

This includes 1188 presentations of the trivial monoid. The finite complete
presentation of the trivial monoid (a,b|a = 1,b = 1) does not itself appear in our
enumeration, because as we mentioned, we discard instances with defining relations
where both sides have length < 1. However, we don’t have to look far to find other
presentations of the trivial monoid.

26 SLAVA PESTOV

1: 1188, 2: 2059, 3: 1233, 4: 1644, 5: 1019, 6: 1630, 7: 636, 8: 884,
9: 493, 10: 615, 11: 191, 12: 317, 13: 79, 14: 134, 15: 62, 16: 158,
17: 16, 18: 60, 19: 2, 20: 52, 21: 38, 22: 12, 24: 31, 25: 5, 26: 11,
27: 42, 28: 10, 30: 52, 32: 5, 34: 8, 36: 17, 39: 4, 42: 4, 44: 8, 48: 12,
50: 12, 52: 4, 55: 4, 56: 8, 60: 18, 64: 14, 81: 6, 84: 22, 96: 1, 100: 4,
105: 2, 120: 7, 129: 2, 147: 6, 160: 2, 165: 2, 192: 2, 195: 2, 320: 2,
324: 2, 339: 4, 605: 2, 1083: 2.

TABLE 4. Number of finite monoids of each order.

Example 2. The first presentation of the trivial monoid is number 5:
5 aa=a,ab=1 finite:1 fcrs:a=1,b=1

From this presentation (a,b|aa = a,ab = 1), it easy to see that a < aab < ab < 1
and therefore b < ab < 1 also.

Example 3. A more interesting example is instance number 8216:
8216 abab=b,bbaaa=1 finite:1 fcrs:a=1,b=1

Here is the shortest proof the author could find that (a,b|abab = b,bbaaa = 1)
presents the trivial monoid. First, we have:

a < abbaaa < abbaabbaaaa < abbaabababaaaa < abbababaaaa
& abbbaaaa < aba < ababbaaa < bbaaa < 1

Thus, we can remove the letter a from the presentation, leaving us with bb < b and
bb < 1, from which it follows that b < 1 also.

Table 4 shows a histogram with the number of presentations of finite monoids
of each size. Table 5 lists the largest handful of instances.

Example 4. The finite monoids with 324 elements have a simple description. We
will look at (a,b|aaab = ba,bbbb = 1); the other one is anti-isomorphic. We have
a < a8, because:

a & bla © b2a’b & v2a’b? ba’ b & ot P!
Therefore, given any word, we can collect all the b’s at the end. This can blow up
the number of a’s, but then we repeatedly replace a®' with a, and b* with 1, until
we get a word of the form a™b™, where 0 < m < 81 and 0 < n < 4.

Indeed, 81 -4 = 324 is the order of the presented monoid.

The maximum is achieved by two instances with a whopping 1083 elements:

Question 1. Is there a simple way to describe (a,b|aaa = 1,bbbb = aba) and
(a,b| aaa = 1, abbbba = by, with 1083 elements? Are they isomorphic?

OTHER REDUCTION ORDERS

The first pass fails with 227 instances, meaning that Knuth-Bendix hits the iteration
limit without success. As mentioned in Section 1, it is well-known that successful
completion may depend on a choice of reduction order [7]. We can observe this in
our enumeration.

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 27

320 elements: a,b|aaaa = 1,babbb = a)

a,b|aaab = ba,bbbb = 1) (a,b|baaa = ab, bbbb = 1)

a,b|aaa = 1,ababba =b) {a,b|aaa = 1, abbaba = b)

((a,b|aaaa = 1, bbbab = a)
((
((
(a,b|aaa = 1,babb = aba) {a,b|aaa = 1,bbab = aba)
((
((

324 elements:

339 elements:

605 elements: a,b|abba = b,aaaaa = 1) (a,b|aba = bb, aaaaa = 1)

1083 elements: (a,b|aaa = 1,bbbb = aba) {(a,b|aaa = 1, abbbba = b)

TABLE 5. The largest finite monoids in our enumeration.

Example 5. Here is instance number 7499:
(a,b| aba = aab,bab = b)

The first pass fails to solve this instance because Knuth-Bendix completion does
not terminate with the shortlex order a < b, instead enumerating the rules of this
infinite complete presentation:

aba = aab
aabb = ab
ba"ab = ba™ foralln >0
However, in this case, simply orienting the initial rules with the shortlex order b < a
is sufficient to obtain a finite complete presentation. Knuth-Bendix does not have
to add any more rules, because all critical pairs resolve immediately:
bab = b
aab = aba

Thus, we perform three additional passes, to attempt the following additional
reduction orders on all remaining instances:

e Shortlex b < a.
e Recursive path a ! b.
e Recursive path b2 a. (The recursive path order is described in [24].)

This solves 34 more instances, but 193 still remain.
ADDING A GENERATOR

The remaining instances do not admit a finite complete presentation over {a,b}
compatible with any of our reduction orders, but most still admit finite complete
presentations over a different alphabet. This phenomenon was first noted in [6].

Example 6. Here is instance number 10717:
(a,b|abab = 1, abbba = b)

Knuth-Bendix over {a, b} fails with each one of our reduction orders. For example,
with shortlex a < b, we get this infinite complete presentation:

bba = abb
abab =1
baba =1

aba™t1bb = ba™ foralln >1
ba"ba = aba™b for all n > 2

28 SLAVA PESTOV

On the other hand, if we add a generator ¢ and a defining relation (aba, ¢), we get
a different presentation of the same monoid:

(a,b,c|abab = 1, abbba = b, aba = ¢)

Knuth-Bendix successfully completes with the recursive path order b cla, and we
get this finite complete presentation over {a,b, c}:

ch =1

bc =1
bba = abb
ca = bacc
aba = ¢

Notice in the preceding example, the failed run over the alphabet {a, b} involves
rules with many occurrences of the factor aba, and then introducing (aba, ¢) gives
us a finite complete presentation. This suggests the following simple heuristic for
guessing the extra generator, inspired by [25].

First, we perform two rounds of Knuth-Bendix completion, and stop. The result
is not confluent, but we can collect all factors of all the words appearing in the rules
added so far, and order them by frequency. In the current enumeration, it suffices
to take the highest and second-highest frequency factor, of each length from 2 to 6.
(The author has also experimented with heuristics for adding multiple generators,
but this is not required for any instances in this enumeration.)

For each remaining instance, and for each such factor u € {a, b}* in the factor set
of this instance, we add a new letter ¢ and rule (u,c) to the original presentation,
to get a different presentation of the same monoid. We attempt completion on this
isomorphic presentation, this time with every possible shortlex and recursive path
order on the extended alphabet {a, b, c}. This solves 190 additional instances.

UNSOLVED INSTANCES

Only 3 instances remain, all with length 10. We print them before exiting:
Remaining 3

7415 bab=aaa,bbbb=1 hard

10397 aaaa=1,abbba=b hard

11931 aaa=a,abba=bb hard

The third instance is our friend (a,b|aaa = a, abba = bb) from Section 4.
The first two, {a,b|bab = aaa,bbbb = 1) and (a,b|aaaa = 1,abbba = b), differ
from these finite monoids only by a single letter:

100 elements: (a,b|bab = aa,bbbb = 1) (a,b|acaa = 1, abba = b)
147 elements: (a,b|bab = aaa,bbb =1) (a,b|aaa = 1, abbba = b)
1083 elements: {a,b|aaa = 1,bbbb = aba) (a,b|aaa = 1, abbbba = b)

Perhaps they are large finite monoids too, and we just need to run more iterations
of Knuth-Bendix completion before giving up? We can rule out this possibility.

First, for each monoid, we consider the group with the same presentation. This
is called the universal enveloping group of the monoid. The universal enveloping
group of {(a,b|bab = aaa, bbbb = 1) can be presented as follows, by adding a letter ¢
to act as the inverse of a:

(a,b, c|bab = aaa,bbbb = 1,ca = 1,ac = 1)

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 29

This group has a finite complete presentation, with the recursive path order alcb:

ca =1 bab = aaa
ac =1 abaab = bbaaaaaaa
aaaab = baaaa aaabb = baabcce

cb = aaabccce bbb = abcce

The presented group is infinite. For example, a™ is irreducible for all n > 0.

We can repeat this with (a,b|aaaa = 1,abbba = b). We add a letter ¢ to act
as the inverse of b, which yields a group with same finite complete presentation as
above, except with the renaming a — ¢, b+ a, c — b.

Now, we apply the next lemma, due to Mastodon user typeswitch [26]:

Lemma 5.1. Let (4| R) be a monoid presentation, let M be the presented monoid,
and let G be the universal enveloping group of M, so the group with the same
presentation. If M is a finite monoid, then G is a finite group.

Proof. Suppose that x € A. Since M is finite, there exist positive integers m < n
such that ™ < z™. It follows that ™ < z" as elements of G, but furthermore,
2"~ ™ & 1 in G. Multiplying both sides by 2! then gives us that "~ & 27!
in G, for all z € A.

Now, consider the canonical mapping that sends each monoid generator of M
to the corresponding group generator of G, and extend this mapping to a monoid
homomorphism from M to G. We just showed that each element of G can be written
with positive powers of generators only, so this homomorphism is surjective, and in
particular, G is finite. (]

Thus, we conclude that our unsolved monoids cannot be finite, so we ask:

Question 2. Do (a,b|bab = aaa,bbbb = 1) and {(a,b|aaaa = 1, abbba = b) admit
finite complete presentations? Are they isomorphic?

THREE GENERATORS

Finally, with a small change to the program, we can enumerate presentations with
three generators and two relations. Unlike the two generator case, this enumeration
does not contain any finite monoids—it takes at least three relations to present a
finite monoid on three generators. The first hard instance has length 6:

(a,b,c|ba = ac,cb = 1)

This remarkable monoid can be viewed as a generalization of the bicyclic monoid,
(b,c|cb =1). Let us rename the generators as follows: a — $, b+—), ¢+ (. The
defining relations become)$ < $(and () < 1. It is also easy to see that:

e GO0 <9

This leads to an infinite complete presentation—here the dollars collect on the left:

O =1
)$ = $(
($ =$)

(=" foralln>0
The irreducible words are precisely)™ (", $" (", and $™)", where m, n > 0.

Conjecture 1. The monoid presented by (a, b, c|ba = ac,cb = 1) does not admit
a finite complete presentation.

30

(1]

[2

4

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

SLAVA PESTOV

REFERENCES

E. L. Post, “Recursive unsolvability of a problem of Thue,” The Journal of Symbolic Logic,
vol. 12, no. 1, p. 1-11, 1947.
https://www.wolframscience.com/prizes/tm23/images/Post2.pdf

F. Otto and Y. Kobayashi, “Properties of monoids that are presented by finite convergent
string-rewriting systems — a survey,” in Advances in Algorithms, Languages, and
Complezity. Springer, 1997, pp. 225-266. https://static.aminer.org/pdf/PDF /000/066/
293 /properties_of _monoids_that_are_presented_by_finite_convergent_string.pdf

D. E. Knuth and P. B. Bendix, “Simple word problems in universal algebras,” in
Automation of Reasoning: 2: Classical Papers on Computational Logic 1967-1970.
Springer, 1983, pp. 342-376.
https://www.semanticscholar.org/paper/Simple- Word- Problems-in- Universal- Algebras-
Knuth-Bendix/94877bdf8313565b90758a5e¢664764139857b358

G. Huet, “A complete proof of correctness of the Knuth-Bendix completion algorithm,”
Journal of Computer and System Sciences, vol. 23, no. 1, pp. 11-21, 1981.
https://www.sciencedirect.com/science/article/pii/0022000081900027

R. V. Book, “Thue systems as rewriting systems,” Journal of Symbolic Computation, vol. 3,
no. 1, pp. 39-68, 1987.
https://www.sciencedirect.com/science/article/pii/S0747717187800214

D. Kapur and P. Narendran, “A finite Thue system with decidable word problem and
without equivalent finite canonical system,” Theoretical Computer Science, vol. 35, pp.
337-344, 1985. https://www.sciencedirect.com/science/article/pii/0304397585900234

F. Otto, “Finite complete rewriting systems for the Jantzen monoid and the Greendlinger
group,” Theoretical Computer Science, vol. 32, no. 3, pp. 249-260, 1984.
https://www.sciencedirect.com/science/article/pii/0304397584900446

G. S. Tseitin, “An associative calculus with an insoluble problem of equivalence,” in
Problems of the constructive direction in mathematics. Part 1. Moscow—Leningrad: Acad.
Sci. USSR, 1958, vol. 52, pp. 172-189.
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tmé&paperid=
1317&option_lang=eng

C.-F. Nyberg-Brodda, “G. S. Tseytin’s seven-relation semigroup with undecidable word
problem,” 2024. https://arxiv.org/abs/2401.11757

C. C. Squier, “Word problems and a homological finiteness condition for monoids,” Journal
of Pure and Applied Algebra, vol. 49, no. 1, pp. 201-217, 1987.
https://www.sciencedirect.com/science/article /pii/0022404987901290

C. C. Squier, F. Otto, and Y. Kobayashi, “A finiteness condition for rewriting systems,”
Theoretical Computer Science, vol. 131, no. 2, pp. 271-294, 1994.
https://www.sciencedirect.com/science/article/pii/0304397594901759

R. Cremanns and F. Otto, “Finite derivation type implies the homological finiteness
condition FP3,” Journal of Symbolic Computation, vol. 18, no. 2, pp. 91-112, 1994.
https://www.sciencedirect.com/science/article/pii/S074771718471039X

M. Katsura and Y. Kobayashi, “Constructing finitely presented monoids which have no
finite complete presentation,” Semigroup Forum, vol. 54, pp. 292-302, 1997.
https://link.springer.com/article/10.1007/BF02676612

Y. Lafont and A. Prouté, “Church-Rosser property and homology of monoids,”
Mathematical Structures in Computer Science, vol. 1, pp. 297 — 326, 1991.
https://www.irif .fr/~mellies/mpri/mpri-ens/articles /lafont- proute-church-rosser- property-
and-homology-of-monoids.pdf

A. J. Cain, R. D. Gray, and A. Malheiro, “On finite complete rewriting systems, finite
derivation type, and automaticity for homogeneous monoids,” Information and
Computation, vol. 255, pp. 68-93, 2017.
https://www.sciencedirect.com/science/article/pii/S0890540117300937

Y. Kobayashi, “Finite homotopy bases of one-relator monoids,” Journal of Algebra, vol.
229, no. 2, pp. 547-569, 2000.
https://www.sciencedirect.com/science/article/pii/S0021869399982510

https://www.wolframscience.com/prizes/tm23/images/Post2.pdf
https://static.aminer.org/pdf/PDF/000/066/293/properties_of_monoids_that_are_presented_by_finite_convergent_string.pdf
https://static.aminer.org/pdf/PDF/000/066/293/properties_of_monoids_that_are_presented_by_finite_convergent_string.pdf
https://www.semanticscholar.org/paper/Simple-Word-Problems-in-Universal-Algebras-Knuth-Bendix/94877bdf8313565b90758a5e664764139857b358
https://www.semanticscholar.org/paper/Simple-Word-Problems-in-Universal-Algebras-Knuth-Bendix/94877bdf8313565b90758a5e664764139857b358
https://www.sciencedirect.com/science/article/pii/0022000081900027
https://www.sciencedirect.com/science/article/pii/S0747717187800214
https://www.sciencedirect.com/science/article/pii/0304397585900234
https://www.sciencedirect.com/science/article/pii/0304397584900446
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=1317&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=1317&option_lang=eng
https://arxiv.org/abs/2401.11757
https://www.sciencedirect.com/science/article/pii/0022404987901290
https://www.sciencedirect.com/science/article/pii/0304397594901759
https://www.sciencedirect.com/science/article/pii/S074771718471039X
https://link.springer.com/article/10.1007/BF02676612
https://www.irif.fr/~mellies/mpri/mpri-ens/articles/lafont-proute-church-rosser-property-and-homology-of-monoids.pdf
https://www.irif.fr/~mellies/mpri/mpri-ens/articles/lafont-proute-church-rosser-property-and-homology-of-monoids.pdf
https://www.sciencedirect.com/science/article/pii/S0890540117300937
https://www.sciencedirect.com/science/article/pii/S0021869399982510

(17)

(18]

(19]

[20]

(21]

(22]

23]

24]

[25]

[26]

A TWO-RELATION MONOID DOES NOT HAVE FINITE DERIVATION TYPE 31

C.-F. Nyberg-Brodda, “The word problem for one-relation monoids: a survey,” Semigroup
Forum, vol. 103, no. 2, pp. 297-355, 2021.
https://link.springer.com/article/10.1007/s00233-021-10216-8

R. Book and F. Otto, String-Rewriting Systems, ser. Monographs in Computer Science.
Springer, 2012. https://link.springer.com/book/10.1007/978-1-4613-9771-7

M. H. A. Newman, “On theories with a combinatorial definition of equivalence,” Annals of
Mathematics, vol. 43, no. 2, pp. 223-243, 1942.
http://www.ens-lyon.fr/LIP/REWRITING /TERMINATION /NEWMAN /Newman.pdf

Y. Kobayashi, “Homotopy Reduction Systems for Monoid Presentations II: The
Guba—Sapir Reduction and Homotopy Modules,” in Algorithmic Problems in Groups and
Semigroups. Boston, MA: Birkhduser Boston, 2000, pp. 143—-159.

B. Grechuk, Polynomial Diophantine Equations: A Systematic Approach. Springer
International Publishing, 2024. https://link.springer.com/book/10.1007/978-3-031-62949-5
R. McNaughton, “The finiteness of finitely presented monoids,” Theoretical Computer
Science, vol. 204, no. 1, pp. 169-182, 1998.
https://www.sciencedirect.com/science/article/pii/S0304397598000383

J. Berstel, Transductions and Context-Free Languages. Teubner Verlag, 1979.
https://www-igm.univ-mlv.fr/~berstel /LivreTransductions/LivreTransductions.html

C. C. Sims, Computation with Finitely Presented Groups, ser. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 1994. https://www.cambridge.org/us/
universitypress/subjects/mathematics/algebra/computation-finitely- presented-groups

J. Pedersen, “Morphocompletion for one-relation monoids,” in Rewriting Techniques and
Applications, N. Dershowitz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp.
574-578.

“Mastodon post,” 2025. https://gamedev.lgbt/@typeswitch/114915626980225127

https://link.springer.com/article/10.1007/s00233-021-10216-8
https://link.springer.com/book/10.1007/978-1-4613-9771-7
http://www.ens-lyon.fr/LIP/REWRITING/TERMINATION/NEWMAN/Newman.pdf
https://link.springer.com/book/10.1007/978-3-031-62949-5
https://www.sciencedirect.com/science/article/pii/S0304397598000383
https://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html
https://www.cambridge.org/us/universitypress/subjects/mathematics/algebra/computation-finitely-presented-groups
https://www.cambridge.org/us/universitypress/subjects/mathematics/algebra/computation-finitely-presented-groups
https://gamedev.lgbt/@typeswitch/114915626980225127

	1. Introduction
	2. Preliminaries
	3. Finite Derivation Type
	4. The Main Result
	5. A Monoid Census
	References

