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Abstract. This article describes a monoid with only two defining relations,
but no finite complete presentation over any alphabet. This improves upon

what is perhaps the previous smallest known example of three rules.

1. Introduction

The word problem is central to the theory of finitely-presented monoids:

The word problem. Given a finite monoid presentation ⟨A |R⟩
and two words x, y over this alphabet A, can we rewrite x into y
by applying a finite sequence of rules from R?

The word problem is undecidable in the general case [1]. On the other hand,
with a complete monoid presentation, it suffices to view the rewrite rules as directed
reductions, which are repeatedly applied to a word until fixed point. We can then
solve the word problem by computing the normal form of both words, and checking
for string equality [2]. Various other questions are decidable from a finite complete
presentation, such as whether the presented monoid is finite, or a group [3].

The Knuth-Bendix algorithm attempts to construct a complete presentation by
adding new rules [4, 5, 6]. This either ends with a finite complete presentation,
or continues forever. A successful outcome depends both on choice of reduction
order, and the alphabet used to present the monoid [7, 8]. Further, it is known
that a finitely-presented monoid may have a decidable word problem, but no finite
complete presentation over any alphabet. We survey previous results in Section 2,
recall some preliminaries in Section 3, and then prove our result in Section 4.

2. Related Work

Example 1. A monoid with an undecidable word problem cannot have a finite
complete presentation. Tseitin’s classic example has 5 letters and 7 rules [9, 10]:

C1 := ⟨a, b, c, d, e | ac ⇔ ca, ad ⇔ da, bc ⇔ cb, bd ⇔ db,

eca ⇔ ce, edb ⇔ de,

cca ⇔ ccae⟩

Example 2. The first counterexamples with a decidable word problem are due to
Craig C. Squier, who showed that a monoid with a finite complete presentation
satisfies the property FP3, while for each k ≥ 2, the monoid Sk is not FP3 [11]:

Sk := ⟨a, b, t, x1, . . . , xk, y1, . . . , yk | ab ⇔ 1,

x1a ⇔ atx1, . . . , xka ⇔ atxk,

x1t ⇔ tx1, . . . , xkt ⇔ txk,

x1b ⇔ bx1, . . . , xkb ⇔ bxk,

x1y1 ⇔ 1, . . . , xkyk ⇔ 1⟩
1



2 SLAVA PESTOV

Example 3. Squier settled the status of S1 in a subsequent paper, by showing
that if a monoid has a finite complete presentation over some alphabet, it has finite
derivation type, while S1, with 5 letters and 5 rules, does not have finite derivation
type. Thus, it has no finite complete presentation [12]:

S1 := ⟨a, b, t, x, y | ab ⇔ 1, xa ⇔ atx, xt ⇔ tx, xb ⇔ bx, xy ⇔ 1⟩
It is also known that finite derivation type implies FP3 [13].

Example 4. Finite derivation type is not a sufficient condition for a monoid to
admit a finite complete presentation. Katsura and Kobayashi gave an example
with 10 letters and 7 rules, having a word problem decidable in linear time, finite
derivation type, but still no finite complete presentation [14]:

⟨a, b1, c1, d1, b2, c2, d2, b3, c3, d3 | b1a ⇔ ab1, b2a ⇔ ab2, b3a ⇔ ab3,

c1b1 ⇔ c1b1, c2b2 ⇔ c1b1,

b1d1 ⇔ b1d1, b2d2 ⇔ b1d1⟩
Our proof was heavily inspired by some of the techniques here, in particular looking
at the properties of Irr(R). In their terminology, our result could be re-stated as
showing that our monoid does not admit a finite s-closed transversal.

Example 5. Cain et. al. gave a monoid with only 3 letters and 3 rules that does
not have finite derivation type, and thus no finite complete presentation [15]:

⟨a, b, c | ac ⇔ ca, bc ⇔ cb, cab ⇔ cbb⟩
This is the shortest example we’ve seen in the literature. It is also notable for being
homogeneous (the rules are length-preserving); every equivalence class is finite, so
the word problem in such a monoid can be solved by exhaustive enumeration.

Example 6. It is not known if every one-relation monoid has a finite complete
presentation, or if the word problem is decidable for all such monoids. An excellent
survey of this subject appears in [16], from which we quote:

... the smallest monadic one-relation monoid to which no result in the literature
appears to be available to solve the word problem for is ⟨a, b | bababbbabba ⇔ a⟩.
The author has not found a finite complete rewriting system for this monoid,

but has solved the word problem for this monoid by other means.

Here is a finite complete presentation of ⟨a, b | bababbbabba ⇔ a⟩ over {a, b, c}:
bababbbabba ⇒ a

caa ⇒ bacca cac ⇒ baccc cba ⇒ a
bbaa ⇒ abba acabc ⇒ abacc bbaaa ⇒ aabba

bbaac ⇒ aabbc cabaa ⇒ babacca ababac ⇒ cccccc

acabaa ⇒ ccccccca acabac ⇒ cccccccc acabba ⇒ abaa
acabbc ⇒ abac bbaaca ⇒ aaba bbababc ⇒ abbbabc

cababbc ⇒ babac cabacca ⇒ babacccca ababbbac ⇒ cccc

abbbaaca ⇒ abaaba abbbaacc ⇒ abaabc acababbc ⇒ cccccc
bbababbc ⇒ abbbab bbacccca ⇒ acca bbaccccc ⇒ accc

Every one-relation monoid is known to have finite derivation type [17].

3. Preliminaries

We assume some familiarity with finitely-presented monoids and string rewriting;
a complete (no pun intended) treatment of the subject can be found in [18]. This
section will summarize the notation and terminology used in our proof, but it is
too dense to serve as an introduction to the topic.

Definition 1. A monoid is a set with an associative binary operation and identity
element. If A is any set, the free monoid A∗ is the set of all finite sequences of
elements of A.
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• An x ∈ A is a letter and an x ∈ A∗ is a word.
• The length of x ∈ A∗ is denoted by |x| ≥ 0.
• The unique empty word of length 0 is denoted by 1.
• We view each letter x ∈ A as a word of length 1 in A∗.
• The concatenation of words x and y is denoted xy or x · y.
• A word u is a factor of a word w if w = xuy for some x, y ∈ A∗.
• The equality operator = denotes graphical equality of words in A∗.
• A morphism of free monoids ϕ : A∗ → B∗ satisfies ϕ(x · y) = ϕ(x) · ϕ(y) for

all x, y ∈ A∗. A morphism is completely determined by the image of each
letter a ∈ A. If ϕ(a) ̸= 1 for all a ∈ A, we say ϕ is non-erasing.

A monoid presentation is a pair ⟨A |R⟩, where A is a set, and R ⊂ A∗ ×A∗ is a set
of ordered pairs of words. A presentation is finite if A and R are finite.

• The one-step monoid congruence ⇔1
R on A∗ relates all pairs of words:

xuy ⇔1
R xvy where x, y ∈ A∗, and either (u, v) or (v, u) ∈ R

• The monoid congruence ⇔R is the reflexive and transitive closure of ⇔1
R.

• The equivalence classes of ⇔R then have the structure of a monoid, with
identity element [[1]] and binary operation [[x]] · [[y]] := [[x · y]].

• A finitely-presented monoid is one that admits a finite presentation.

We also need to consider rewriting steps that only apply a rule from left to right:

• The one-step reduction relation ⇒1
R on A∗ relates all pairs of words:

xuy ⇒1
R xvy where x, y ∈ A∗, and (u, v) ∈ R

• The reduction relation ⇒R is the reflexive and transitive closure of ⇒1
R.

• A reduction relation ⇒R is terminating if it has no infinite sequence of
one-step reductions:

x1 ⇒1
R x2 ⇒1

R x3 ⇒1
R · · ·

• A reduction relation ⇒R is confluent if whenever x ⇒R y and x ⇒R z,
there exists a word w ∈ A∗ such that y ⇒R w and z ⇒R w.

• A word x ∈ A∗ is irreducible if x ⇒R y implies that x = y.
• The set of irreducible words of ⇒R is denoted by Irr(R).
• If y is irreducible and x ⇒R y, we say that y is a normal form for x.

A monoid presentation ⟨A |R⟩ is complete if ⇒R is terminating and confluent. A
finite complete presentation is one that is both finite, and complete. In this case,
every equivalence class of ⇔R has an effectively computable, unique normal form.

Definition 2. Let A∗ be the free monoid over some set A. We define the family
of regular subsets of A∗ as follows:

(1) If X ⊂ A∗ is a finite set of words, then X is regular.
(2) If X, Y ⊂ A∗ are regular, their union X ∪ Y is regular.
(3) If X, Y ⊂ A∗ are regular, their concatenation XY is regular. This is the

set of all words xy where x ∈ X and y ∈ Y .
(4) We write Xn to mean X · · ·X, repeated n times, with X0 := {1}.
(5) If X ⊂ A∗ is regular, then X∗ is regular. This is the infinite union of Xn

over all n ≥ 0:

X∗ := {1} ∪X ∪XX ∪XXX · · ·
(6) It is convenient to define X+ := XX∗ = X∗ \ {{1}}.

The following are well-known consequences of the above:

• If X and Y are regular, X ∩ Y is regular.
• If X is regular, the complement A∗ \X is regular.
• If X is regular, the set formed by reversing each word in X is regular.
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Next, we state some properties of Irr(R), the set of irreducible words of ⇒R.

Lemma 3. Suppose that ⟨A |R⟩ is some monoid presentation.

(1) If x ̸∈ Irr(R) and y ∈ A∗, then xy ̸∈ Irr(R) and yx ̸∈ Irr(R).
(2) If xy ∈ Irr(R), then x ∈ Irr(R) and y ∈ Irr(R).
(3) If R is finite, then Irr(R) is regular.

Proof. If x ̸∈ Irr(R), then x has a factor u for some (u, v) ∈ R. Thus, for any
y ∈ A∗, both xy and yx also have a factor of u, so xy ̸∈ Irr(R) and yx ̸∈ Irr(R).
This is (1), and (2) is the contrapositive statement. For (4), suppose that R is
finite, and let n := |R|. The complement of Irr(R) in A∗ is the regular set of all
words that contain a left-hand side of R as a factor:

A∗ \ Irr(R) = (A∗ · {u1} ·A∗) ∪ · · · ∪ (A∗ · {un} ·A∗)

It follows that Irr(R) is a regular set. □

In light of (3) above, we recall the pumping lemma for regular sets [19].

Lemma 4 (Pumping lemma). Let X ⊆ A∗ be a regular set. Then there exists a
natural number ℓ > 0 such that any word u ∈ X with |u| ≥ ℓ has a factorization:

u = xyz

with the property that |y| > 0, |xy| ≤ ℓ, and for all n ≥ 0:

xynz ∈ X

When X is finite, the lemma is vacuously true; we take ℓ to be longer than the
longest word in X. Now, suppose we have an u ∈ X with |u| ≥ ℓ. The above
statement yields a factorization with |x| ≥ 0 and |z| ≥ |u| − ℓ. Since the family of
regular sets is closed under reversal, there is a dual statement to the above, which
produces a factorization where |yz| ≤ ℓ instead, so |x| ≥ |u| − ℓ and |z| ≥ 0. Our
proof uses the “prefix” and “suffix” form of the lemma, once each.

We’re going to apply the pumping lemma to the irreducible words of a finite
complete presentation. The following fact will then become relevant:

Lemma 5. Suppose that xy ∈ Irr(R), yz ∈ Irr(R), but xyz ̸∈ Irr(R). Then
there must exist a rule (u, v) ∈ R with |u| ≥ |y|.

Proof. Since xyz ̸∈ Irr(R), we can write xyz = x′uz′ where u is the left-hand
side of a rule in R, and x′, y′ ∈ A∗. Suppose that to the contrary, |u| < |y|.
Either |xy| ≥ |x′u|, or |xy| < |x′u|. If |xy| ≥ |x′u|, then xy ∈ Irr(R) has a
prefix x′u ̸∈ Irr(R), which is impossible. On the other hand, if |xy| < |x′u|,
then |z| ≥ |z′|, and now uz′ ̸∈ Irr(R) is a suffix of yz ∈ Irr(R), which is again
impossible. So |u| ≥ |y|. □

4. The Monoid ⟨a, b | aba ⇔ aa, baa ⇔ aab⟩

Henceforth, A and R will always denote the alphabet and rules of our monoid
presentation ⟨a, b | aba ⇔ aa, baa ⇔ aab⟩:

A := {a, b}
R := {(aba, aa), (baa, aab)}

The monoid congruence generated by R will be denoted by ⇔.
When we construct certain regular sets below, we will let a and b denote the

singleton sets {a} and {b}, so for example, b∗ ∪ b∗a is the set of all words of the
form bn or bna, for all n ≥ 0.

Before we see the main proof, we need one more lemma, which will essentially
solve the word problem in our monoid.
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Lemma 6. We make use of four facts about ⇔:

(1) If x ⇔ aabn, then x = biaabn−i or x = biababn−i, for some 0 ≤ i ≤ n.
(2) Let x̃ denote the reversal of x ∈ A∗. Then x ⇔ y if and only if x̃ ⇔ ỹ.
(3) Every word in b∗ ∪ b∗a is a singleton equivalence class of ⇔.
(4) For all n ≥ 0, we have bnaaa ⇔ aaa.

Proof. For (1), we apply baa ⇔ aab and aba ⇔ aa. For (2), it suffices to note that
for each (u, v) ∈ R, either (u, v) = (ũ, ṽ), or (u, v) = (ṽ, ũ). For (3), suppose that
x ⇔ y, and x ̸= y. Then x must contain a factor aa or aba. No word in the stated
set has such a factor. For (4), we apply baa ⇔ aab, and see that whenever n > 0,
we have bnaaa ⇔ bn−1aaba ⇔ bn−1aaa. The conclusion follows by induction. □

We now state our main result.

Theorem 1. The monoid ⟨a, b | aba ⇔ aa, baa ⇔ aab⟩ does not have a finite
complete presentation over any alphabet.

Proof. Assume that ⟨C |S⟩ is a finite complete presentation of ⟨A |R⟩. We use the
lowercase Greek alphabet to denote words in C∗.

We need a little bit of notation for working with ⟨C |S⟩. We fix a “decoding”
morphism Ψ from C∗ to A∗, such that α ⇔S β if and only if Ψ(α) ⇔ Ψ(β):

Ψ: C∗ → A∗

We assume that no letter of C decodes to the empty word in A∗, since any such
letter can be removed from the presentation. Thus, Ψ is non-erasing.

Finally, we define a function Λ that takes a word in A∗, encodes it over C∗, and
computes the ⇒S-normal form, which produces a word in Irr(S) ⊆ C∗:

Λ: A∗ → Irr(S)

So Λ(x) = Λ(y) if and only if x ⇔ y, and Ψ(Λ(x)) ⇔ x, for all x, y ∈ A∗.
Since S is finite, Irr(S) is regular by Lemma 3. Let ℓ > 0 be the smallest natural

number such that Lemma 4 applies to any word λ ∈ Irr(S) with |λ| ≥ ℓ.
The basic idea is that we apply the pumping lemma to Λ(aabn), and one of

Λ(bma) or Λ(abm); we then “connect” them in a certain way, to get a sequence of
distinct irreducible words that all decode to a word equivalent to aaa.

First, consider the normal form of aabn, where n ≥ 0. By part 1 of Lemma 6,
there is an 0 ≤ i ≤ n such that:

Ψ(Λ(aabn)) = biaabn−i or Ψ(Λ(aabn)) = biababn−i

Now, we can choose a large n > 0 such that Λ(aabn) has a prefix or suffix of length
at least ℓ that decodes to a word in b+ by Φ. We then write:

Λ(aabn) = αβ or Λ(aabn) = βα

where Ψ(α) ∈ b∗aab∗ ∪ b∗abab∗, Ψ(β) ∈ b+, and |β| ≥ ℓ. We consider the first case
where Λ(aabn) = αβ; the other direction is symmetric, by part 2 of Lemma 6. We
apply the pumping lemma “at the end” of αβ ∈ Irr(S). This yields a factorization:

αβ = αβ0β1β2 ∈ Irr(S)

with the property that |β0| ≥ 0, |β1| > 0, |β1β2| ≤ ℓ, and for all k ≥ 0:

αβ0β
k
1β2 ∈ Irr(S)

Now, Irr(S) is closed under taking prefixes by Lemma 3, so we can drop β2:

(1) αβ0β
k
1 ∈ Irr(S)

Also, note that Ψ(β0) ∈ b∗, Ψ(β1) ∈ b+.
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Next, consider the normal form of bma, where m ≥ 0. (If Λ(aabn) = βα above,
we would be looking at abm instead.) This is a singleton equivalence class of ⇔, by
part 3 of Lemma 6, so Ψ(Λ(bma)) is identically equal to bma. We choose m large
enough so that |Λ(bma)| ≥ ℓ+ 1. Now, since Ψ is non-erasing, we can write:

Λ(bma) = δγ

where Ψ(δ) ∈ b+, Ψ(γ) ∈ b∗a, and γ ∈ C is a single letter, thus |δ| ≥ ℓ. We apply
the pumping lemma again, this time “at the start” of δγ. This yields a factorization:

δγ = δ2δ1δ0γ ∈ Irr(S)

with the property that |δ1| > 0, |δ2δ1| ≤ ℓ, and for all k ≥ 0:

δ2δ
k
1δ0γ ∈ Irr(S)

Now, Irr(S) is closed under taking suffixes, so again we drop δ2:

(2) δk1δ0γ ∈ Irr(S)

Also, Ψ(δ0) ∈ b∗, Ψ(δ1) ∈ b+.
All that remains is to connect the two pumps. There exist i, j > 0 such that:

Ψ(β1) = bi

Ψ(δ1) = bj

Thus Ψ(βj
1) = Ψ(δi1), so βj

1 ⇔S δi1, but both are irreducible, so βj
1 = δi1. We set:

ζ := βj
1 = δi1(3)

Taking (1), (2), and (3) together, we see that for all k ≥ 0:

αβ0ζ
k ∈ Irr(S)

ζkδ0γ ∈ Irr(S)

Furthermore, S is finite, so by Lemma 5, for all sufficiently large k > 0:

(4) αβ0ζ
kδ0γ ∈ Irr(S)

We’re almost done. Let’s apply Ψ to each factor of the above word. We recall that:

Ψ(α) ∈ b∗aab∗ ∪ b∗abab∗

Ψ(β0) ∈ b∗

Ψ(ζk) ∈ b+

Ψ(δ0) ∈ b∗

Ψ(γ) ∈ b∗a

We concatenate our regular sets, to form the statement:

Ψ(αβ0ζ
kδ0γ) ∈ b∗aab+a ∪ b∗abab+a

This is to say, for each k > 0, there exist i ≥ 0, j > 0 such that:

Ψ(αβ0ζ
kδ0γ) = biaabja

or

Ψ(αβ0ζ
kδ0γ) = biababja

We have yet to use part 4 of Lemma 6, and this is exactly where we need it:

biababja ⇔ biaabja ⇔ bi+jaaa ⇔ aaa

So in fact:

(5) Ψ(αβ0ζ
kδ0γ) ⇔ aaa

We have our contradiction, because (4) and (5) cannot both be true. □



THE MONOID ⟨a, b | aba ⇔ aa, baa ⇔ aab⟩ HAS NO FINITE COMPLETE PRESENTATION 7

References

[1] E. L. Post, “Recursive unsolvability of a problem of Thue,” The Journal of Symbolic Logic,

vol. 12, no. 1, p. 1–11, 1947.

https://www.wolframscience.com/prizes/tm23/images/Post2.pdf
[2] F. Otto and Y. Kobayashi, “Properties of monoids that are presented by finite convergent

string-rewriting systems — a survey,” in Advances in Algorithms, Languages, and

Complexity. Springer, 1997, pp. 225–266. https://static.aminer.org/pdf/PDF/000/066/
293/properties of monoids that are presented by finite convergent string.pdf

[3] C. C. Sims, Computation with Finitely Presented Groups, ser. Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 1994. https://www.cambridge.org/us/
universitypress/subjects/mathematics/algebra/computation-finitely-presented-groups

[4] D. E. Knuth and P. B. Bendix, “Simple word problems in universal algebras,” in

Automation of Reasoning: 2: Classical Papers on Computational Logic 1967–1970.
Springer, 1983, pp. 342–376.

https://www.semanticscholar.org/paper/Simple-Word-Problems-in-Universal-Algebras-
Knuth-Bendix/94877bdf8313565b90758a5e664764139857b358

[5] G. Huet, “A complete proof of correctness of the Knuth-Bendix completion algorithm,”

Journal of Computer and System Sciences, vol. 23, no. 1, pp. 11–21, 1981.
https://www.sciencedirect.com/science/article/pii/0022000081900027

[6] R. V. Book, “Thue systems as rewriting systems,” Journal of Symbolic Computation, vol. 3,

no. 1, pp. 39–68, 1987.
https://www.sciencedirect.com/science/article/pii/S0747717187800214

[7] D. Kapur and P. Narendran, “A finite Thue system with decidable word problem and

without equivalent finite canonical system,” Theoretical Computer Science, vol. 35, pp.
337–344, 1985. https://www.sciencedirect.com/science/article/pii/0304397585900234

[8] F. Otto, “Finite complete rewriting systems for the Jantzen monoid and the Greendlinger

group,” Theoretical Computer Science, vol. 32, no. 3, pp. 249–260, 1984.
https://www.sciencedirect.com/science/article/pii/0304397584900446

[9] G. S. Tseitin, “An associative calculus with an insoluble problem of equivalence,” in
Problems of the constructive direction in mathematics. Part 1. Moscow–Leningrad: Acad.

Sci. USSR, 1958, vol. 52, pp. 172–189.

https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=
1317&option lang=eng

[10] C.-F. Nyberg-Brodda, “G. S. Tseytin’s seven-relation semigroup with undecidable word

problem,” 2024. https://arxiv.org/abs/2401.11757
[11] C. C. Squier, “Word problems and a homological finiteness condition for monoids,” Journal

of Pure and Applied Algebra, vol. 49, no. 1, pp. 201–217, 1987.

https://www.sciencedirect.com/science/article/pii/0022404987901290
[12] C. C. Squier, F. Otto, and Y. Kobayashi, “A finiteness condition for rewriting systems,”

Theoretical Computer Science, vol. 131, no. 2, pp. 271–294, 1994.
https://www.sciencedirect.com/science/article/pii/0304397594901759

[13] R. Cremanns and F. Otto, “Finite derivation type implies the homological finiteness

condition FP3,” Journal of Symbolic Computation, vol. 18, no. 2, pp. 91–112, 1994.
https://www.sciencedirect.com/science/article/pii/S074771718471039X

[14] M. Katsura and Y. Kobayashi, “Constructing finitely presented monoids which have no

finite complete presentation,” Semigroup Forum, vol. 54, pp. 292–302, 1997.
https://link.springer.com/article/10.1007/BF02676612

[15] A. J. Cain, R. D. Gray, and A. Malheiro, “On finite complete rewriting systems, finite

derivation type, and automaticity for homogeneous monoids,” Information and
Computation, vol. 255, pp. 68–93, 2017.

https://www.sciencedirect.com/science/article/pii/S0890540117300937
[16] C.-F. Nyberg-Brodda, “The word problem for one-relation monoids: a survey,” Semigroup

Forum, vol. 103, no. 2, pp. 297–355, 2021.

https://link.springer.com/article/10.1007/s00233-021-10216-8
[17] Y. Kobayashi, “Finite homotopy bases of one-relator monoids,” Journal of Algebra, vol.

229, no. 2, pp. 547–569, 2000.

https://www.sciencedirect.com/science/article/pii/S0021869399982510
[18] R. Book and F. Otto, String-Rewriting Systems, ser. Monographs in Computer Science.

Springer, 2012. https://link.springer.com/book/10.1007/978-1-4613-9771-7

[19] J. Berstel, Transductions and Context-Free Languages. Teubner Verlag, 1979.
https://www-igm.univ-mlv.fr/∼berstel/LivreTransductions/LivreTransductions.html

https://www.wolframscience.com/prizes/tm23/images/Post2.pdf
https://static.aminer.org/pdf/PDF/000/066/293/properties_of_monoids_that_are_presented_by_finite_convergent_string.pdf
https://static.aminer.org/pdf/PDF/000/066/293/properties_of_monoids_that_are_presented_by_finite_convergent_string.pdf
https://www.cambridge.org/us/universitypress/subjects/mathematics/algebra/computation-finitely-presented-groups
https://www.cambridge.org/us/universitypress/subjects/mathematics/algebra/computation-finitely-presented-groups
https://www.semanticscholar.org/paper/Simple-Word-Problems-in-Universal-Algebras-Knuth-Bendix/94877bdf8313565b90758a5e664764139857b358
https://www.semanticscholar.org/paper/Simple-Word-Problems-in-Universal-Algebras-Knuth-Bendix/94877bdf8313565b90758a5e664764139857b358
https://www.sciencedirect.com/science/article/pii/0022000081900027
https://www.sciencedirect.com/science/article/pii/S0747717187800214
https://www.sciencedirect.com/science/article/pii/0304397585900234
https://www.sciencedirect.com/science/article/pii/0304397584900446
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=1317&option_lang=eng
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tm&paperid=1317&option_lang=eng
https://arxiv.org/abs/2401.11757
https://www.sciencedirect.com/science/article/pii/0022404987901290
https://www.sciencedirect.com/science/article/pii/0304397594901759
https://www.sciencedirect.com/science/article/pii/S074771718471039X
https://link.springer.com/article/10.1007/BF02676612
https://www.sciencedirect.com/science/article/pii/S0890540117300937
https://link.springer.com/article/10.1007/s00233-021-10216-8
https://www.sciencedirect.com/science/article/pii/S0021869399982510
https://link.springer.com/book/10.1007/978-1-4613-9771-7
https://www-igm.univ-mlv.fr/~berstel/LivreTransductions/LivreTransductions.html

	1. Introduction
	2. Related Work
	3. Preliminaries
	4. The Monoid a,b|aba aa, baa aab
	References

