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ABSTRACT

Factor is a new dynamic stack-based programming language.
The language and implementation have evolved over several
years, resulting in a purely object-oriented language with
an optimizing native-code compiler and interactive devel-
opment environment. Factor’s metaprogramming features
have allowed it to implement in its standard library fea-
tures other languages have built-in, such as XML literal syn-
tax and local variables. Factor combines ideas from Forth,
Lisp, Smalltalk and C++ to form a general-purpose multi-
paradigm programming language.

1. INTRODUCTION

Factor is a dynamic stack-based programming language.
It was originally conceived as an experiment to create a
stack-based language which is practical for modern program-
ming tasks. It was inspired by earlier stack-based languages
like Forth [29] and Joy [41], which present simple and elegant
models of programming with concise and flexible syntax.
Driven by the needs of its users, Factor gradually evolved
from this base into a dynamic, object-oriented programming
language.

Factor programs look very different from programs in most
other programming languages. At the most basic level, func-
tion calls and arithmetic use postfix syntax, rather than
prefix or infix as in most programming languages. Local
variables are used in only a small minority of procedures
because most code can comfortably be written in a point-
free style. The differences go deeper than this. Factor is a
purely object-oriented language, with an object system cen-
tered around generic functions inspired by CLOS in place
of a traditional message-passing object system. One of our
goals is to make Factor suitable for development of larger ap-
plications, which led us to develop a robust module system.
Factor also has a very flexible metaprogramming system,
allowing for arbitrary extension of syntax and for compile-
time computation. Factor has extensive support for low-
level operations, including manual memory allocation and
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manipulation and making calls to system libraries written
in C and in other languages, allowing for clean integration
of high-level and low-level code within a single programming
language.

Factor has an advanced, high-performance implementa-
tion. We believe good support for interactive development is
invaluable, and for this reason Factor allows programmers to
test and reload code as it runs. Our ahead-of-time optimiz-
ing compiler can remove much of the overhead of high-level
language features. Objects are represented efficiently and
generational garbage collection provides fast allocation and
efficient reclamation. Together, these features make Factor
a useful language for writing both quick scripts and large
programs in a high-level way.

Factor is an open-source project. It is available for free
download from http://factorcode.org.

This paper contributes the following:

e New abstractions for managing the flow of data in
stack-based languages

e A CLOS- and Dylan-inspired object system, featuring
generic functions built upon a metaobject protocol and
a flexible type system

e A system for staged metaprogramming, offering flexi-
bility and ease of use

e The design of a foreign function interface and low-level
capabilities in a dynamic language

e The design of an ahead-of-time compiler for a dynamic
language

A case study in the evolution of a dynamic language

2. LANGUAGE DESIGN

Factor combines features from existing languages with
new innovations. We focus here on the prominent unique
aspects of Factor’s design: our contributions to the stack-
based language paradigm, the module and object systems,
tools for metaprogramming, and low-level binary data ma-
nipulation support.

2.1 Stack-based Programming Language

In Factor, as in Forth and Joy [41], function parameters
are passed by pushing them on an operand stack prior to
performing the function call. We introduce two original
contributions: a set of combinators which replace the stack
shuffling words found in other stack languages, and a syntax
for partial application.



"data.txt" utf8 file-lines
10 head

Figure 1: Retrieving the first ten lines of a file

2.1.1 Postfix Syntax

In stack-based languages, a function call is written as a
single token, which leads to the term “word” being used in
place of “function” in the Forth tradition. This contrasts
with mainstream programming languages, in which func-
tion call syntax combines the function name with a list of
parameters. Languages which use an operand stack in this
manner have been called concatenative, because they have
the property that programs are created by “concatenating”
(or “composing”) smaller programs. In this way, words can
be seen as functions which take and return a stack [26].

Literals in a stack language, such as "data.txt" and 10
in Figure 1, can be thought of as functions that push them-
selves on the stack, making the values available to subse-
quent word calls which pop them off the stack. file-lines
consumes two objects from the stack, a filename string and
an encoding symbol, and pushes a sequence of strings, the
contents of the specified file broken into lines of text. The
first line snippet in Figure 1 reads the contents of data.txt,
placing the contents of the file as an array of lines on the
stack.

On the second line, the standard library word head pops
two objects from the stack, a sequence and an integer, and
pushes a new array containing a fixed number of elements
from the beginning of the input array. The second line of the
code in Figure 1 pops an array from the stack, and pushes a
new array with only the first 10 elements of the input array.

The two lines can be taken as separate programs or con-
catenated to form a single program; the latter case has the
effect of first running the first program and then the second.
Note that newlines between words are interpreted the same
as spaces.

2.1.2 Higher-order Programming

Factor supports higher-order functions. In the Joy tradi-
tion, we refer to higher-order functions as combinators and
to anonymous functions as quotations. Combinators are in-
voked like any other word, and quotations are pushed on the
stack by surrounding a series of tokens with [ and ], which
have the effect of creating a quotation object and delaying
the evaluation of their contents. In Factor, all control flow is
expressed using combinators, including common branching
and looping constructs usually given special syntax in other
languages. Some examples:

e if in Factor is a combinator taking a boolean value
alongside the “then” and “else” branches as quotations
as inputs. For example,
dup "#" head? [ drop ] [ print ] if
will test if a string begins with the substring "#", call-
ing drop to discard the string if so or calling print to
output it to the console if not.

e The each standard library word implements what other
languages call a “for-each” loop. It iterates over the el-
ements of a sequence in order, invoking a quotation
with the element as its input parameter on each itera-
tion. For example,

[ "#" head? not ] filter
[ string>number ] map
0 [ + 1 reduce

Figure 2: Summing the numerical value of array elements
not beginning with #

[ print ] each
will print every string in a sequence.

e reduce is a variation of each that passes a progressive
accumulator value to the quotation alongside each se-
quence element, using the quotation output as the new
accumulator. It takes the initial accumulator value as
an additional input between the sequence and quota-
tion. For example,

0 [ + 1] reduce

will sum all of the values in a sequence, and
1 [ * ] reduce

will multiply them.

e map iterates over its input sequence like each but addi-
tionally collects the output value from each invocation
of the quotation into a new sequence. For example,

[ reverse ] map
will make a reversed copy of every element in a se-
quence, collecting them into a new sequence.

e The filter standard library word also invokes a quo-
tation over every element of a sequence but collects
only the elements for which the quotation returns true
into a new sequence, leaving them unchanged from the
input sequence. For example,

[ "#" head? not ] filter
will create a new sequence containing the elements of
the input sequence not starting with "#".

The code snippet in Figure 2 pops a sequence from the
stack, which is understood to contain string elements. String
elements starting with # are removed with filter, the re-
maining ones are converted to numbers with map, and these
numbers are then added together with reduce.

Code written in this style, in which a single input value is
gradually transformed and reshaped into a result, is known
as pipeline code, named due to the resemblance to the use
of pipes in Unix shell scripts to combine multiple programs.
Pipeline code is expressed very naturally in Factor; given
several words, say f, g, h, each taking a single object from
the stack and pushing a single result, the program that ap-
plies each word to the result of the previous word is simply
written as

: fgh (x-—-y) fgh;

In an applicative language, one writes something like this
Python definition:

def fgh(x):
h(g(£(x)))

Compared to Factor, the above code has more syntactic nest-
ing, and the order of tokens is backwards from the order of
evaluation. Functional languages often have operators for
function composition inspired by traditional mathematical
notation that help simplify the expression of pipeline code,
such as Haskell’s . operator:



: factorial ( n -- n! )
dup 0 =
[ drop 11
[ dup 1 - factorial * ]
if ;

Figure 3: Factorial in Factor

fgh=h.g . f

Although this approach improves on the nesting and syntac-
tic overhead required by the purely applicative approach,
compared to Factor, the approach still requires additional
operators and leaves the order of operations reading in re-
verse order.

As mentioned above, conditionals are done in Factor using
the if higher-order function. All values except for £ (false)
are considered true. Looping combinators such as each com-
bine branching with tail recursion to express loops. Factor
guarantees tail call optimization. Figure 3 shows an example
of conditionals and recursion.

2.1.3  Stack Effects

Factor provides a formal notation for describing the inputs
and outputs of a word called stack effect notation, which is
used both in Factor documentation and in Factor source
code. For example, the stack effect of the file-lines word
is written as follows, with the special token -- separating
inputs from outputs:

( path encoding -- seq )

New words are defined by following the : token with the
name of the new word, then the stack effect and definition,
with the definition terminated by the ; token. Every word
definition must have a stack effect declared. For example,
a word to strip all strings that begin with # from an input
sequence of strings:

: strip-comment-lines ( seq -- newseq )
[ "#" head? not ] filter ;

Factor stack effect notation is similar to conventional Forth
stack effect notation. However, in Forth, the contents of a
stack effect are actually mere comments skipped over by the
parser, and their notation is a matter of programmer con-
vention. By contrast, Factor provides a standard stack effect
syntax and enforces the declared stack effects of words. In
Factor, with very few exceptions, words must pop a fixed
number of inputs off the stack, and push a fixed number of
outputs onto the stack. Row-polymorphic combinators, de-
scribed below, and macros, described in 2.3.2, are the only
two exceptions to this rule. Stack effects are checked and
enforced by a kind of type system in the language imple-
mentation, known as the stack checker.

Stack languages can support a unique type of polymor-
phism: a single higher order function may sometimes accept
quotation parameters with different stack effects. For exam-
ple, the reduce word, which applies a binary operation to
an accumulator value with every element of a sequence, can
be implemented in terms of the each word, which applies a
unary operation to each element of a sequence. On every
application of each, the element is presented above the rest
of the stack, and the code in the quotation can read and

replace additional stack values below the element. Supply-
ing a binary operation to each thus causes it to accumulate
the results of each application of the operation, giving it the
effect of reduce. In the Factor library, reduce is defined in
terms of each with only a different argument order. This
type of polymorphism is referred to as row polymorphism,
because the treatment of a similar construct in some other
stack languages is done with a row-polymorphic type system
(cite something about row polymorphism).

2.1.4 The Stack Checker

The stack checker performs an abstract interpretation of
the input program, simulating each word’s effect on the
stack. When conditional branches are encountered, both
branches are evaluated and unified; a unification failure in-
dicates that the two branches leave with inconsistent stack
heights, which is a compile-time error.

The stack checker must be able to handle row polymor-
phism. The current approach is to inline calls to all words
which call quotations of indeterminate stack effect so that
the quotations that they call can be inlined. The inlining
of words is driven by inline declarations. The stack checker
tracks the flow of constants in a program in a simple, pes-
simistic way, and can inline quotations with this mechanism.
If it finds a quotation that it cannot inline, but it must, then
it rejects the program. This inlining is not just an optimiza-
tion; some code is invalid without inlining.

Of course, not all programs can be written this way. In
some cases, the invoked quotation may not be known un-
til runtime. For this, there are two “escape hatches.” One
mechanism is to declare the stack effect of the quotation at
its call site. The stack effect will be checked at runtime. In
this case, the quotation does not need to be inlined. Quota-
tions are normally called with the word call, and an effect
can be specified with the syntax call( -- ). Alternatively,
a quotation can be called with a user-supplied datastack,
using the with-datastack word. This is useful for imple-
menting a read-eval-print loop (Section 3.2).

We believe that a mechanism for checking the stack depth
of programs is a necessary tool for concatenative program-
ming languages. In concatenative languages without static
stack checking, incorrect use of the stack can lead to hard-to-
discover bugs. In the absence of static checking, if a caller
expects a word to have a certain effect on the height of
the stack, and to only change a particular number of items
on the stack, then the programmer writing the calling code
must write unit tests covering every possible code path in
the callee word. While good test coverage is a desirable
property to have in any software system, it can be difficult
achieving full test coverage in practice.

2.1.5 Dataflow Combinators

Stack languages provide a set of words for re-arranging
operands at the top of the stack. These words can be used
to glue other words together. A typical set of shuffle words
is provided as part of Factor:

e drop ( x -- )
edup ( x -- x x)
eover (xy -——x7yx)

eswap (xy ——yx)



TUPLE: edge face vertex opposite-edge next-edge ;

[ vertex>> ] [ opposite-edge>> vertex>> ] bi

Figure 4: Cleave combinators being used to call multiple
slot accessors on a single object on the stack

: check-string ( obj -- obj )
dup string? [ "Not a string" throw ] unless ;

: register-service ( name realm constructor -- )
[ check-string ] [ 1 [ call( -- value ) ] trix

3

Figure 5: Spread combinators being used to change objects
at the top of the stack

erot (xyz-—-yxz)

One downside of using shuffle words for data flow in concate-
native languages is that understanding a long expression re-
quires the reader to perform stack shuffling in their head to
follow along. We propose an alternative facility, consisting
of three fundamental combinators that encapsulate common
easy-to-understand dataflow patterns.

e cleave takes a single object together with an array of
quotations as input, and call each quotation with the
value in turn.
5{[1+]1[2-113 cleave
— 6 3

e spread takes a series of objects together with an array
of an equal number of quotations as input, and call
each quotation with the corresponding value.

"A" "b" { [ >lower ] [ >upper ] } spread
% |lall IIBI|

e napply take a series of objects together with a sin-
gle quotation and an integer as input, and call each
quotation with the value. The number of values is de-
termined by the integer.

"A" "B" [ >lower ] 2 napply
_) |lall Ilbll

Shorthand forms are also available for binary and ternary
cases. Strictly speaking they are not necessary, but they
avoid the slight verbosity of the additional tokens { and
} used to delimit the arrays. They follow a naming scheme
where the shorthand cleave combinators taking two and three
quotations are named bi and tri, spread combinators are
named bi* and tri*, and apply combinators are named bi@
and tria@.

A canonical use case for cleave combinators is to extract
objects from tuple slots as in Figure 4. Spread combinators
are frequently used to pre-process or make assertions about
inputs to words. In Figure 5, name must be a string, and
constructor is replaced with a single object it produces
when called.

2.1.6  Pictured Partial Application Syntax

We propose a syntax for the construction of point-free
closures in a stack-based language. In Factor, quotations do

:: frustum-matrix4 ( xy-dim near far -- matrix )
xy-dim first2 :> (xy )
near x / :> xf
near y / :> yf
near far + near far - / :> zf
2 near far * * near far - / :> wf

{
{xf 0.0 0.00.013%
{0.0yf 0.00.0}
{0.00.0 zf wf 2}
{0.00.0-1.0 0.0}
}

Figure 6: Constructing a perspective projection matrix, us-
ing local variables

not close over an environment of values; pushing a quota-
tion on the operand stack does not allocate any memory and
quotations are effectively literals in the source code. Factor
has an additional facility for constructing new quotations
from values on the stack; this resembles lexical closures in
applicative languages. A “quotation with holes” can be writ-
ten by prefixing it with ’ [, and using _ to refer to values
which are to be filled in from the stack when the quotation
is pushed. The following two lines are equivalent:

5[ _+]
[5+]

2.1.7 Lexical Variables

With a few operations to shuffle the top of the stack,
as well as the previously-mentioned data flow combinators,
there is no need for local variables and the stack can be
used for all data flow. In practice, some code is easier to
express with local variables, so Factor includes support for
local variables and lexical closures.

A word with named input parameters can be declared with
the :: token in place of :. Whereas normally, the names
of input parameters in the stack effect declaration have no
meaning, a word with named parameters makes those names
available in the lexical scope of the word’s definition. Within
the scope of a :: definition, additional lexical variables can
be bound using the :> operator, which binds either a sin-
gle value from the datastack to a name, or multiple stack
values to a list of names surrounded by parentheses. Literal
array and tuple syntax can include lexical variable names
and construct data structures from lexical variable values.

Numerical formulas often exhibit non-trivial data flow and
benefit in readability and ease of implementation from using
locals. For example, Figure 6 constructs a perspective pro-
jection matrix for three-dimensional rendering. This would
be somewhat awkward with purely stack-based code.

We have found lexical variables useful only in rare cases
where there is no obvious solution to a problem in terms of
data flow combinators and the stack. Out of approximately
37,000 word and method definitions in the source code of
Factor and its development environment at the time of this
writing, 326 were defined with named parameters. Despite
their low rate of use, we consider lexical variables, and in
particular lexically-scoped closures, a useful extension of the
concatenative paradigm.



TUPLE: circle radius ;
TUPLE: rectangle length width ;
GENERIC: area ( shape -- area )
M: circle area
radius>> dup * pi * ;
M: rectangle area
[ length>> ] [ width>> ] bi * ;

Figure 7: Shapes and their area

2.2 Organizing Programs

Whereas many languages, notably Java, combine their
module system and type system, Factor separates the two
conecepts to maximize flexibity and modularity of code.
Vocabularies provide modularity, source code organization,
and namespaces. Independent of source code organization,
classes and generic words organize the data types and op-
erations of a program at run time.

2.2.1 Vocabularies

Factor code is organized in a system of nested modules
called vocabularies. Like Java packages [23], Factor vocabu-
laries have a directory structure corresponding to the name
of the module. A vocabulary contains zero or more defini-
tions. The most common are word definitions.

Every source file must explicitly specify all vocabularies it
uses; only word names defined in these vocabularies will be
in scope when the file is parsed. Any vocabulary dependen-
cies which have not been loaded are loaded automatically.

2.2.2  Object System

Factor is a purely object-oriented programming language
in the same sense as Smalltalk or Ruby: Every value is an ob-
ject with an intrinsic type that participates in dynamic dis-
patch, and basic operations like array access, arithmetic and
instance variable lookup are done through dynamically dis-
patched method calls. However, unlike Smalltalk or Ruby,
Factor does not specially distinguish a receiver object for
method calls. Asin CLOS, there is no object that “owns” the
method. Instead, special words called generic words have
multiple implementations (methods) based on the classes of
their arguments. Generic words offer more flexibility than
traditional message passing:

e Methods on a generic word may be defined in the same
file as a class or in a different file. This allows new
generic words to dispatch on existing classes. It is
also possible to define new classes with methods on
existing generic words defined in the file where the class
is defined.

e More complicated kinds of classes are possible. Predi-
cate classes [14] fit into the model very easily.

e Multiple dispatch is natural to express. Though the
core Factor object system doesn’t yet implement mul-
tiple dispatch, it is available in an external library.

Factor’s object system is implemented in Factor and can be
extended through a meta-object protocol. Factor has three
types of classes: primitive classes, tuple classes and derived
classes. Primitive classes are used for objects like strings,
numbers and words. These cannot be subclassed. Tuple

: factorial ( n -- n! )
[1,b] product ;

Figure 8: Factorial written in a more natural way

classes are records with instance variables and single inher-
itance. They form a hierarchy rooted at the class tuple.
Figure 7 shows a simple use of tuple classes to model shapes
and a generic word to calculate their area.

Primitive classes and tuple classes both use method calls
to access instance variables. For an instance variable called
foo, the generic word to read the variable is called foo>>,
and the generic word to write it is called >>foo.

Derived classes offer a way to create new classes out of
existing ones. A predicate class is a subclass of another class
consisting of instances satisfying a particular predicate. A
union class consists of the union of a list of classes, and
an intersection class consists of the intersection of a list of
classes.

A particular case of union classes is mizins. A mixin is
an extensible union class. Mixins are used to share behavior
between an extensible set of classes. If a method is de-
fined on a mixin, then the definition is available to any class
which chooses to add itself to the mixin. One particular use
of mixins is to mark a set of classes which all implement
methods on a set of generic words. Though Factor has no
fixed construction for an interface as in Java, an informal
protocol consisting of a set of generic words combined with
a mixin to mark implementors is idiomatically used for the
same purpose.

In Factor’s standard library, compile-time metaprogram-
ming is used to define several new features in the object
system. This allows the core object system to remain sim-
ple while users have access to advanced features.

The delegate library implements the Delegation Pattern
[22]. The programmer can define a protocol and declare a
class to delegate to another class using a piece of code to
look up the delegate. The library will generate methods
for each generic word in the protocol to perform the dele-
gation. This reduces the amount of boilerplate code in the
program. Libraries also exist for the terse declaration of
algebraic datatypes, a limited form of multiple inheritance,
and for multiple dispatch methods.

The Factor standard library makes good use of the object
system. Arrays, vectors, strings and other types of sequences
are abstracted as a set of generic words with a mixin, called
the sequence protocol. There are similar protocols for asso-
ciative mappings and sets. One particular use case of these
protocols is to make virtual sequences (or associative map-
pings or sets): objects which satisfy the sequence protocol
but do not actually physically store their elements. One ex-
ample of a virtual sequence is a range of integers, with a
given start, end and step. Figure 8 shows a definition of the
factorial function using a range, which is much more concise
than the definition in Figure 3.

2.3 Ahead-of-time Metaprogramming

The philosophy of Factor’s metaprogramming and reflec-
tion capabilities is that users should be able to extend the
language with the same mechanisms that the language it-
self is implemented in. This maximizes expressiveness while
minimizing code duplication between the language imple-



TUPLE: product id quantity price ;

: make-product-tag ( product -- xml )
[ id>> ] [ quantity>> ] [ price>> ] tri
(XML
<product id=<-> quantity=<-> price=<-> />
XML]

: make-product-dump ( sequence-of-products -- xml )
[ make-product-tag ] map
<XML
<products><-></products>
XML> ;

Figure 9: Dumping a sequence of products as XML

mentation and its metaprogramming API.

Factor’s syntax is entirely defined using parsing words
written in Factor itself, and users can add their own parsing
words to extend Factor’s syntax. Additionally, Factor pro-
vides macros, which are used like ordinary words but per-
form partial evaluation on their first few parameters. Func-
tors allow generic programming, and can be used to create
classes or vocabularies parameterized by a list of arguments.

These three features allow for an alternative model of
metaprogramming from that of C++ [38] or scripting lan-
guages like Ruby [39]. Factor offers high runtime perfor-
mance using a static compiler while maintaining flexibility.
Like Ruby, this feature uses ordinary Factor code, rather
than a restricted special language like C++ templates. Un-
like Ruby, metaprogramming takes place explicitly before
compilation, allowing an ahead-of-time compiler to be effec-
tive in optimizing the code, as in C++. We have not found
cases where we wanted to use runtime metaprogramming
rather than Factor’s approach.

It is common to use these methods in conjunction. A pars-
ing word might trigger the invocation of a functor, which in
turn might expand into code containing macros. For exam-
ple, the SPECIALIZED-ARRAY: syntax invokes a functor to
create a specialized array type, a data structure designed to
contain binary data in a specified packed format, similar to
C++’s templated std: :vector data structure.

2.3.1 Parsing Words

Factor’s syntax is based on the Forth programming lan-
guage. A program is a stream of whitespace-separated to-
kens. Some of these tokens are simple literals, like numbers
or strings. Some tokens are words called at runtime. And
some tokens are words run during parsing, called parsing
words.

Parsing words can perform arbitrary computation, and
usually make use of the parser API to read tokens from the
source file, and the word definition API to define new words.
One use for parsing words is to create compound literals.
For example, { is a parsing word which scans until the next
matched } and creates an array consisting of the objects in
between the brackets.

Parsing words are also used for definitions. The parsing
word : defines a new word, by reading the stack effect and
word body, and then storing the definition in the current
vocabulary.

In the Factor standard library, the <XML parsing word cre-

SYNTAX: $[
parse—quotation call( -- value ) suffix! ;

Figure 10: The parsing word $[ allows arbitrary computa-
tion in-line at parse-time

"libssl" {
{ [ os winnt? ] [ "ssleay32.d11" ] }
{ [ os macosx? ] [ "libssl.dylib" ] }
{ [ os unix? ] [ "libssl.so" ] }

} cond cdecl add-library

Figure 11: Determining the name of the OpenSSL library
to load based on the user’s current platform

ates a literal document in the eXtensible Markup Language
(XML) [17], with special syntax for objects to be spliced
into the document. The similar [XML parsing word creates
an XML fragment which can be embedded in a larger doc-
ument. XML literals have become a popular feature in new
programming languages such as Scala [16] and as additions
to existing programming languages such as E4X [12]. In con-
trast to other languages, we were able to implement XML
literals purely as a library feature. Figure 9 demonstrates a
word which takes a sequence of product tuples, generating
an XML document listing quantities and prices. Note that
within an XML fragment, <-> is used to take an argument
from the stack, in a manner similar to the pictured partial
application syntax discussed in Section 2.1.6.

As another example of Factor’s metaprogramming capa-
bility, local variables are also implemented as a user-level
library. The implementation converts code using locals to
purely stack-based code.

As an example of creating a parsing word, Figure 10 shows
how to create a parsing word to do arbitrary computation at
parse-time. The word parse-quotation invokes the parser
to return the Factor code between the current location and
the matching J. The word suffix! is used to push the
parsed value onto the parser’s accumulator. Because parsing
words always take and return an accumulator, a stack effect
is unnecessary.

2.3.2 Macros

Macros in Factor are special words which take some of
their input parameters as compile-time constants. Based on
these parameters, the macro is evaluated at compile-time,
returning a quotation that replaces the macro call site. This
quotation may take further parameters from the run-time
stack.

One example of a macro is cond, used to provide a conve-
nient syntax for if-else-if chains. As an argument, cond takes
an array of pairs of quotations, in which the first quotation
of each pair is the condition and the second is the corre-
sponding outcome. An example is shown in Figure 11. The
cond macro expands into a series of nested calls to the if
combinator at compile time. Macro expansion is performed
in the stack checker using the same constant propagation
mechanism as quotation inlining (Section 2.1.4). When a
macro invocation is encountered, the macro body is called
at compile time with the constant inputs that it requires.
Calling a macro with values that are not known to be con-



stant is a compile-time error.

This integration with the stack checker gives Factor macros
more flexibility than traditional Lisp macros [24]. Rather
than requiring macro parameters to be literals immediately
present in the syntax, they are only required to be constants
as known by the stack checker. A combinator can call a
macro with only some parameters immediately supplied, as
long as the combinator is declared inline and usages of
the combinator supply the necessary compile-time parame-
ters. A simple example is a composition of the length word
with the case combinator. The case combinator takes a
sequence of pairs, where the first element in each pair is a
value, and the second is a quotation to be called if the top
of the stack at run time is equal to the value. We can define
the length-case combinator, which takes a sequence and a
sequence of pairs, dispatching on the length of the sequence:

: length-case ( seq cases -- )
[ dup length ] dip case ; inline

2.3.3 Functors

Although parsing words will already let you generate ar-
bitrary code at compile-time, it can be inconvenient to use
the word definition API repeatedly for similar definitions.
The functors library provides syntactic sugar for this, in a
manner that resembles C++ templates but allows for arbi-
trary computation in Factor. Functor syntax also resembles
the quasiquote syntax of Common Lisp [24]. One major us-
age of functors is for the aforementioned specialized arrays
of binary types.

2.4 Low-level Features

Factor includes many tools for systems programming that

allow for both high-efficiency specialized and high-level object-

oriented patterns of usage. A foreign function interface pro-
vides access to calling procedures written in other languages
as if they were written in Factor. Binary data can be repre-
sented and manipulated efficiently. A new abstraction pro-
vides for the automatic disposal of resources.

2.4.1 Foreign Function Interface

Factor has a foreign function interface (FFI) for calling
out to native libraries. Factor’s FFI is similar to Python’s
Ctypes [18] and Common Lisp’s CFFI [3]. The FFI can
call functions written in C, Fortran and Objective C. Ad-
ditional libraries exist to communicate with Lua, Javascript
and C++.

When calling foreign functions with dynamically-typed
values, Factor automatically wraps and unwraps binary types
when used as parameters or return values: simple integer
and floating-point types convert automatically between boxed
Factor representations and native binary representations.
Binary data types, described in the next section, are un-
wrapped when used as arguments and allocated when re-
turned from foreign functions.

2.4.2 Binary Data Support

Dynamic languages generally provide little support for
packed binary data. Languages that offer binary data sup-
port often do so as a second-class citizen, either through a
high-overhead extension library like Python’s Struct [19] or
OCaml!’s Bigarray [32], or as a limited extension of their FFI
facilities geared more toward interfacing with native libraries

SPECIALIZED-ARRAYS: uchar float ;

TYPED: float>8bit-image (
in: float-array
out: uchar-array )
[ 0.0 1.0 clamp 255.0 * >integer ]
uchar-array{ } map-as ;

Figure 12: A word definition with type annotations for input
and output parameters

than toward high-performance data manipulation. By con-
trast, Factor provides extensive binary data support, com-
bining strong compiler support for native data types with a
suite of optimized data structures that allow for manipula-
tion of flat or structured binary arrays using Factor’s stan-
dard sequence, numeric, and data structure operations with
near C performance.

Factor’s library includes three main kinds of objects for
aggregating and manipulating binary data:

e Specialized arrays, packed arrays of a specified native
type compatible with the library’s sequences protocol.

e Structs, structured binary containers that provide slot
accessors like Factor’s tuple objects

e SIMD vectors, 128-bit hardware vector types repre-
sented and manipulated as constant-length sequences

Factor provides a fundamental set of binary types mirror-
ing the basic C types from which structs, specialized ar-
rays, and vectors can be constructed. New struct types
extend this binary type system, allowing arrays of structs
or structs containing structs to be instantiated. These ob-
jects all provide interfaces compatible with standard Factor
sequences and tuples, so binary data objects can be used
in generic code and manipulated with standard Factor id-
ioms. The compiler provides primitives for loading, storing,
and operating on native integer, floating-point, and vector
types. When dynamic Factor objects of these types are not
needed, the compiler can operate on them unboxed, keep-
ing the values in machine registers. Additionally, escape
analysis allows the compiler to eliminate the generation of
tuple objects that wrap intermediate struct and specialized
array values. With these optimizations, specialized code can
be written at a high level, operating on sequence and tuple-
like objects, which the compiler transforms into C-like direct
manipulation of binary data (Section 3.4).

For example, the float>8bit-image word given in Figure
12 uses Factor’s standard generic clamp, *, and >integer
words along with the map-as sequence combinator to con-
vert an array of floating-point image components with val-
ues ranging from 0.0 to 1.0 into eight-bit unsigned integer
components ranging from 0 to 255. With the help of type
annotations, Factor reduces the operation to a C-like loop.

2.4.3  Scoped Resource Management

A common problem in garbage-collected languages is that,
although memory management is handled automatically, there
is no provision for automatically releasing external resources
such as file handles or GPU memory. As a result, code



: perform-operation ( in out -- ) ... ;

"in.txt" binary <file-reader> &dispose
"out.txt" binary <file-writer> &dispose
perform-operation

] with-destructors

Figure 13: Destructors example

for working with external resources is still susceptible to
resource leaks, resource exhaustion, and premature deallo-
cation. Some garbage collected languages support finaliz-
ers, which cause garbage collection of an object to run a
user-supplied hook which then frees any external resources
associated with the object. However, finalizers are not an
appropriate abstraction for dealing with external resource
cleanup due to their nondeterminism. An external resource
may be exhausted prior to the heap filling up because the
garbage collector runs only when more memory is needed,
a condition that is independent of the state of external re-
sources.

Factor’s destructors feature combines the strengths of these
other languages’ approaches to resource management. Any
object with associated external resources can implement a
method on the dispose generic word to release its resources.
The with-destructors combinator creates a new dynamic
scope and runs a supplied quotation. The quotation can reg-
ister disposable objects by calling one of two words, &dispose
or |dispose. The former always disposes its parameter
when the with-destructors form is exited, whereas the lat-
ter only disposes if the supplied quotation raises an excep-
tion. For example, Figure 13 is opens two files and performs
an operation on them, ensuring that both files are properly
disposed of.

3. IMPLEMENTATION

Factor has an advanced high-performance implementa-
tion. The language is always compiled. Memory is managed
with a generational garbage collector. Generic dispatch is
optimized both by attempting to statically select a method
and through polymorphic inline caches.

3.1 Architecture

The Factor implementation is structured into a virtual
machine (VM) written in C++ and a core library written in
Factor. The VM provides essential runtime services, such as
garbage collection, method dispatch, and a base compiler.
The rest is implemented in Factor.

The VM loads an image file containing a memory snap-
shot, as in many Smalltalk and Lisp systems. The source
parser manipulates the code in the image as new definitions
are read in from source files. The source parser is written in
Factor and can be extended from user code (Section 2.3.1).
The image can be saved, and effectively acts as a cache for
compiled code.

Values are referenced using tagged pointers [25]. Small
integers are stored directly inside a pointer’s payload. Large
integers and floating point numbers are boxed in the heap;
however, compiler optimizations can in many cases elim-
inate this boxing and store floating point temporaries in

registers. Specialized data structures are also provided for
storing packed binary data without boxing (Section 2.4).

Factor uses a generational garbage collection strategy to
optimize workloads which create large numbers of short-
lived objects. The oldest generation is managed using a
mark-sweep-compact algorithm, with younger generations
managed by a copying collector [43]. Even compiled code is
subject to compaction, in order to reduce heap fragmenta-
tion in applications which invoke the compiler at runtime,
such as the development environment. To support early
binding, the garbage collector must modify compiled code
and the callstack to point to newly relocated code.

Run-time method dispatch is handled with polymorphic
inline caches [28]. Every dynamic call site starts out in an
uninitialized cold state. If there are up to three unique re-
ceiver types, a polymorphic inline cache is generated for the
call site. After more than three cache misses, the call site
transitions into a megamorphic call with a cache shared by
all call sites.

All source code is compiled into machine code by one of
two compilers, called the base compiler and optimizing com-
piler. The base compiler is a context threading compiler im-
plemented in C++ as part of the VM, and is mainly used for
bootstrapping purposes. The optimizing compiler is written
in Factor and is used to compile most code.

Factor is partially self-hosting and there is a bootstrap
process, similar to Steel Bank Common Lisp [34]. An image
generation tool is run from an existing Factor instance to
produce a new bootstrap image containing the parser, object
system, and core libraries. The Factor VM is then run with
the bootstrap image, which loads a minimal set of libraries
which get compiled with the base compiler. The optimizing
compiler is then loaded, and the base libraries are recompiled
with the optimizing compiler. With the optimizing compiler
now available, additional libraries and tools are loaded and
compiled, including Factor’s GUI development environment.
Once this process completes, the image is saved, resulting in
a full development image.

3.2 The Interactive Environment

Factor is accompanied by an interactive environment based
around a read-eval-print loop. The environment is built on
top of a GUI toolkit implemented in Factor. Graphical con-
trols are rendered via OpenGL, and issues such as clipboard
support are handled by an abstraction layer with backends
for Cocoa, Windows, and X11. Developer tools provided in-
clude a documentation and vocabulary browser, an object
inspector, a single stepper and a tool for browsing errors.

When developing a Factor program, it is useful to test
different versions of the program in the interactive environ-
ment. After changes to source files are made on disk, vo-
cabularies can be reloaded, updating word definitions in the
current image. The word refresh-all is used to reload all
files that have changed compared to the currently loaded
version.

Most dynamic languages allow code reloading by process-
ing definitions in a source file as mutating the dictionary of
definitions. Whenever a definition is used, it is looked up at
runtime in the dictionary. There are two problems with this
approach:

e The late binding creates overhead at each use of a
definition, requiring name lookup or extra indirection.
Late binding also hinders optimizations such as inlin-



ing.

e Stale definitions remain in memory when definitions
are subsequently removed from a source file, and the
source file is reloaded. This potentially triggers name
clashes, leaves dangling references, and causes other
problems.

In Factor, the parser associates definitions with source
files, and if a changed source file is reloaded, any defini-
tions which are no longer in the source file are removed
from the running image. The optimizing compiler coordi-
nates with the incremental linker capability provided by the
VM to reconcile static optimizations with on-the-fly source
code changes.

When compiling word bodies, the optimizing compiler is
permitted to make certain assumptions about the class hier-
archy, object layouts, and methods defined on generic words.
These assumptions are recorded as dependencies and stored
in an inverted index. When one or more words or classes are
redefined inside a development session, this dependency in-
formation is used to calculate a minimal set of words which
require recompilation.

The incremental linker mechanism is used after a word
is redefined to rewrite all callers of a word to point to its
new address. After a word is redefined, the segment of the
heap containing compiled code is traversed to update the
callers of the word. This allows us to use early binding
while maintaining the illusion of late binding.

Tuples use an array-based layout while remaining compat-
ible with redefinition, giving the illusion of a more flexible
layout. This is achieved by performing a full garbage col-
lection when a tuple class is redefined, allocating different
amounts of space for tuples based on what fields have been
added or removed.

3.3 Base Compiler

The primary design considerations of the base compiler
are fast compilation speed and low implementation com-
plexity. As a result, the base compiler generates context-
threaded code with inlining for simple primitives [2], per-
forming a single pass over the input quotation.

The base compiler is driven by a set of machine code tem-
plates which correspond to generated code patterns, such as
creating and tearing down a stack frame, pushing a literal on
the stack, making a subroutine call, and so on. These ma-
chine code templates are generated by Factor code during
the bootstrap process. This allows the base and optimiz-
ing compilers to share a single assembler backend written in
Factor.

3.4 Optimizing Compiler

The optimizing compiler is structured as a series of passes
operating on two intermediate representations (IRs), referred
to as high-level IR and low-level IR. High-level IR represents
control flow in a similar manner to a block-structured pro-
gramming language. Low-level IR represents control flow
with a control flow graph of basic blocks. Both intermediate
forms make use of single static assignment (SSA) form to
improve the accuracy and efficiency of analysis [9].

3.4.1 Front End

High-level IR is constructed by the stack effect checker.
Macro expansion and quotation inlining is performed by the

stack checker online while high-level IR is being constructed.
The front end does not need to deal with local variables, as
these have already been eliminated and replaced with stack-
based code.

3.4.2 Gradual Typing

When static type information is available, Factor’s com-
piler can eliminate runtime method dispatch and allocation
of intermediate objects, generating code specialized to the
underlying data structures. Factor provides several mecha-
nisms to facilitate static type propagation:

e Functions can be annotated as inline, causing the com-
piler to replace calls to the function with the function
body.

e Functions can also be hinted, causing the compiler to
generate multiple specialized versions of the function,
each assuming different input types, with dispatch at
the entry point to choose the best-fitting specialization
for the given inputs.

e Methods on generic functions propagate the type in-
formation for their dispatched-on inputs.

e Finally, functions can be declared with static input and
output types using the typed library.

Type information is recovered by a series of compiler op-
timization passes.

3.4.3 High-level Optimizations

The three major optimization performed on high-level IR
are sparse conditional constant propagation (SCCP [42]),
escape analysis with scalar replacement, and overflow check
elimination using modular arithmetic properties.

The major features of our SCCP implementation are an
extended value lattice, rewrite rules, and flow sensitivity.
Our SCCP implementation augments the standard single-
level constant lattice with information about object types,
numeric intervals, array lengths and tuple slot types. Type
transfer functions are permitted to replace nodes in the IR
with inline expansions. Type functions are defined on many
of the core language words. This is used to statically dis-
patch generic word calls by inlining a specific method body
at the call site. This inlining, performed at the same time as
the SCCP analysis, in turn generates new type information
and new opportunities for constant folding, simplification
and further inlining. In particular, generic arithmetic oper-
ations which would normally require dynamic dispatch can
be lowered to simpler operations as type information is dis-
covered, and overflow checks can be removed from integer
operations using numeric interval information. The analysis
can represent predicated type information to reason about
values which have different types on different control flow
paths. Additionally, calls to closures which combinator in-
lining cannot eliminate are eliminated when enough infor-
mation is available [13].

An escape analysis pass is used to discover tuple alloca-
tions which are not stored on the heap or returned from the
current function. Scalar replacement is performed on such
allocations, converting tuple slots into SSA values. Escape
analysis is particularly effective at eliminating closure con-
struction at call sites of higher-order functions, since most



of Factor’s higher-order functions are inlined by the stack
checker.

The modular arithmetic optimization pass identifies inte-
ger expressions in which the final result is taken to be mod-
ulo a power of two and removes unnecessary overflow checks
from any intermediate addition and multiplication opera-
tions. This novel optimization is global and can operate
over loops.

3.4.4 Low-level Optimizations

Low-level IR is built from high-level IR by analyzing con-
trol flow and making stack reads and writes explicit. During
this construction phase and a subsequent branch splitting
phase, the SSA structure of high-level IR is lost. SSA form
is reconstructed using the SSA construction algorithm de-
scribed in [6], with the minor variation that we construct
pruned SSA form rather than semi-pruned SSA, by first
computing liveness. To avoid computing iterated dominance
frontiers, we use the TDMSC algorithm from [10].

The major optimizations performed on low-level IR are
local value numbering, global copy propagation, representa-
tion selection, and instruction scheduling.

The local value numbering pass eliminates common sub-
expressions and folds expressions with constant operands
[7]. It makes use of algebraic identities such as reassociation
to increase optimization opportunities. It also rewrites ar-
ray access instructions to use the complex addressing modes
available on the x86 architecture. Global copy propagation
uses the standard optimistic formulation of the algorithm.
Following value numbering and copy propagation, a repre-
sentation selection pass optimizes floating-point and SIMD
code by using a cost-based model to decide which values
should be stored in registers instead of being boxed in the
heap. A form of instruction scheduling intended to reduce
register pressure is performed on low-level IR as the last step
before leaving SSA form [36].

We use the second-chance binpacking variation of the lin-
ear scan register allocation algorithm [40, 44]. Our variant
does not take ¢ nodes into account, so SSA form is destruc-
ted first by eliminating ¢ nodes while simultaneously per-
forming copy coalescing, using the method described in [5].

3.5 Evaluation

We compared the performance of the current Factor im-
plementation with four other dynamic language implemen-
tations:

e CPython 3.1.2%, the primary Python implementation.
e SBCL 1.0.38%, a Common Lisp implementation.
e LuaJIT 2.0.0betad?, a Lua implementation.

e V8 (SVN revision 4752)*, a JavaScript implementa-
tion.

To measure performance, we used seven benchmark pro-
grams from the Computer Language Benchmark Game [21].
Benchmarks were run on an Apple MacBook Pro equipped
with a 2.4 GHz Intel Core 2 Duo processor and 4GB of

"http://www.python.org
*http://www.sbcl.org
3http://luajit.org
“http://code.google.com/p/v8/

Factor | LuaJIT | SBCL | V8 Python

binarytrees 1.764 | 6.295 1.349 | 2.119 | 19.88

fasta 2.597 | 1.689 2.105 | 3.948 | 35.23
knucleotide | 1.820 | 0.573 0.766 | 1.876 | 1.805
nbody 0.393 | 0.604 0.402 | 4.569 | 37.08
regexdna 0.990 | -° 0.973 | 0.166 | 0.874
revcomp 2.377 1.764 2.955 | 3.884 | 1.669

1.377 1.358 2.229 | 12.22 | 104.6

spectralnorm

Figure 14: The time in seconds taken to run seven bench-
marks on five language implementations

RAM. All language implementations were built as 64-bit bi-
naries. The JavaScript, Lua and Python benchmarks were
run as scripts from the command line, and the Factor and
Common Lisp benchmarks were pre-compiled into stand-
alone images.® The results are shown in Figure 14, and they
demonstrate that Factor’s performance is competitive with
other state-of-the-art dynamic language implementations.

4. EVOLUTION

The Factor language and implementation has evolved sign-
ficantly over time. The first implementation of Factor was
hosted on the Java Virtual Machine and used as a scripting
language within a larger Java program. As a result, the first
iteration of the language was rather minimal, with no direct
support for user-defined types, generic functions, local vari-
ables, or automatic inclusion of vocabulary dependencies.

We moved away from the JVM as a host platform due
to a lack of support for tail-call optimization, continuations,
and certain forms of dynamic dispatch. While techniques
for getting around these limitations exist, and work is now
being done to address some of these limitations at the JVM
level [35], at the time we felt our goals would be better served
by implementing our own VM and native code compiler.

As the focus of the language shifted from embedded script-
ing to application development, new features were added and
existing features were redesigned to better support larger
codebases. Rather than design language features upfront,
new features have been added incrementally as needed for
the compiler and standard library. Language changes can
usually be implemented as user-level libraries, and moved
into the core of the language only at the point where it is
deemed useful to use the feature in the implementation of
the language itself. This type of evolution is only possible
because of Factor’s extensive metaprogramming capabilities.

The object system is a good example of this evolution.
Originally, the language had no object system, and hashta-
bles were sometimes used in place of one. But as larger
programs were written in Factor, the utility of system of
generic words became clear. A library for generic words was
created, and this was later moved into the core of the lan-
guage. The sequence protocol and similar structures were
only defined later, once the libraries for the individual se-
quence types became more advanced and it was clear that
code was duplicated.

The stack checker was initially optional. Code had to pass
the stack checker to be compiled with the optimizing com-
piler, but significant bodies of code did not pass. Later,

5More details about the test setup can be found online at

http://factor-language.blogspot.com/2010_05_01_archive.html



escape hatches like call( -- ) were added, and it became
practical to require all code to pass the stack checker. This
change immediately led to the discovery and repair of nu-
merous infrequent bugs in the standard library.

The compiler has also evolved over time. Compiler op-
timizations and virtual machine improvements have been
added to address performance bottlenecks in running pro-
grams. The speed of generated code has always been bal-
anced with the speed of the compiler. As more advanced
optimizations have been added, the time it takes to compile
the Factor development environment has remained roughly
constant, a suggestion made by other researchers in the de-
velopment of compilers [20].

We have found it extremely useful to have a large body
of code which we can try out language design ideas and
performance optimizations. For this reason, we encourage
Factor programmers to contribute their libraries and demo
applications to be included in the main Factor distribution.

5. RELATED WORK

Others have approached the problem of eliminating stack
effect bugs (Section 2.1.4) in terms of adding a full-fledged
static type system to a concatenative language. StrongForth
[1] adds a relatively simple system, and Cat [11] adds a more
detailed type system including support for row polymor-
phism. The design of our stack checker is similar to the
Java Virtual Machine’s bytecode verifier pass, and the in-
variants imposed on Factor code are similar to those of the
Java Virtual Machine specification [33].

Other languages have syntax for creating anonymous func-
tions, as in Section 2.1.6. For example Clojure supports
syntax like (+ 1 %) short for (fn [x] (+ x 1)) [27]. Here,
the role of % is the opposite of _ in Factor, representing the
argument rather than the retained value.

Factor’s object system does not distinguish a receiver in
method calls. Other similar object systems include CLOS
[4], Cecil [8], and Dylan [37]. CLOS, like Factor, allows
the object system to be extended through a meta-object
protocol [31], whereas Cecil is more restrictive.

Parsing words (Section 2.3.1), are similar to Forth’s imme-
diate words. One major difference between Forth and Factor
is that in Forth, control flow is implemented with immediate
words such as IF and THEN; in Factor, control flow is done
with combinators. A second major difference is that whereas
the Forth parser has two modes, compile and interpret, in
Factor there is effectively no interpret mode; the parser al-
ways compiles code into quotations. Even code entered at
the top-level is first compiled into a quotation, and then the
quotation is immediately called and discarded. Eliminating
the two modes from the Forth parser solves some conceptual
problems. In particular, so-called state-smart words [15] are
no longer needed.

Other languages provide mechanisms for resource manage-
ment, but we believe these to be more difficult to use than
Factor’s mechanism (Section 2.4.3). In C++, a common
idiom for working with external resources is known as Re-
source Acquisition is Initialization (RAII). A stack-allocated
object is used to wrap the external resource handle; the
object’s destructor runs deterministically at the end of its
scope and deallocates the resource when the object leaves
scope. The Common Lisp programming language popular-
ized a similar idiom known as the with- idiom: libraries im-
plement scoped resource management by enclosing the scope

of the allocated resource in a higher-order function such as
with-open-file, which encapsulates acquiring and releas-
ing the external resource. This approach doesn’t scale very
well if many resources need to be acquired and released in
the same piece of code, due to the resulting nesting of with-
functions. The C# [30] and Python languages offer special
syntax for scoped external resources, C#’s using keyword
and Python’s with statement, that provide the same func-
tionality as the Common Lisp idiom, but as a built-in lan-
guage feature.

6. CONCLUSION

We have demonstrated Factor, a new dynamic stack-based
object-oriented programming language. Factor incorporates
features from many different previous languages systems into
a new product combining their advantages. Factor has a
very flexible object system and metaprogramming model,
allowing the best coding style to be used for the job. It com-
bines tools for dealing with bits and foreign function calls
with high-level programming tools in the same language, of-
fering the best of both worlds. Its advanced optimizing com-
piler makes it realistic to implement high-performance pro-
grams with few or no type declarations. Taken all together,
these features make Factor a system that allows complex,
high-performance programs to be constructed rapidly and
easily.
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